Решебник по алгебре 11 класс Никольский Параграф 9. Равносильность уравнений и неравенств системам Задание 21

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 21

\[\boxed{\mathbf{21.}}\]

\[\textbf{а)}\ \frac{x^{2} - 5x + 6}{\sqrt{2x - 5}} = 0\]

\[\left\{ \begin{matrix} x^{2} - 5x + 6 = 0 \\ 2x - 5 > 0\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} - 5x + 6 = 0 \\ x > 2,5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 5x + 6 = 0\]

\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 6\]

\[x_{1} = 2\ ( < 2,5);\]

\[x_{2} = 3 - корень\ уравнения.\]

\[Ответ:x = 3.\]

\[\textbf{б)}\ \frac{x^{2} + 5x - 6}{\sqrt{x + 2}} = 0\]

\[\left\{ \begin{matrix} x^{2} + 5x - 6 = 0 \\ x + 2 > 0\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} + 5x - 6 = 0 \\ x > - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} + 5x - 6 = 0\]

\[x_{1} + x_{2} = - 5;\ \ x_{1} \cdot x_{2} = - 6\]

\[x_{1} = - 6\ (не\ подходит);\]

\[x_{2} = 1\ ( > - 2).\]

\[Ответ:x = 1.\]

\[\textbf{в)}\ \frac{x^{2} - x + 72}{\sqrt{5 - x}} = 0\]

\[\left\{ \begin{matrix} x^{2} - x + 72 = 0 \\ 5 - x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} - x + 72 = 0 \\ x < 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - x + 72 = 0\]

\[D = 1 - 284 = - 283 < 0\]

\[нет\ корней.\]

\[Ответ:нет\ решения.\]

\[\textbf{г)}\ \frac{x^{2} - x + 72}{\sqrt{2 - x}} = 0\]

\[\left\{ \begin{matrix} x^{2} - x + 72 = 0 \\ 2 - x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x^{2} - x + 72 = 0 \\ x < 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - x + 72 = 0\]

\[D = 1 - 284 = - 283 < 0\]

\[нет\ корней.\]

\[Ответ:нет\ решения.\]

Скачать ответ
Есть ошибка? Сообщи нам!