\[\boxed{\mathbf{9.}}\]
\[\textbf{а)}\ y = \log_{2}|x|\]
\[|x| > 0\]
\[x \neq 0\]
\[D(f) = ( - \infty;0) \cup (0; + \infty)\text{.\ }\]
\[\textbf{б)}\ y = \left| \log_{2}x \right|\]
\[x > 0\]
\[D(f) = (0; + \infty).\]
\[\textbf{в)}\ y = \log_{2}\left( \text{tgx} \right)\]
\[tg\ x > 0\]
\[\pi k < x < \frac{\pi}{2} + \pi k;k \in Z.\]
\[D(f) = \left( \pi k;\frac{\pi}{2} + \pi k \right);k \in Z.\]
\[\textbf{г)}\ y = 2^{\sqrt{x}}\]
\[x \geq 0\]
\[D(f) = \lbrack 0; + \infty).\]
\[\textbf{д)}\ y = \sqrt{2^{x}}\]
\[2^{x} \geq 0\]
\[D(f) = R.\]
\[\textbf{е)}\ y = \sqrt{x^{2} - 1\ } + \sqrt{1 - x^{2}}\]
\[x^{2} - 1 \geq 0\]
\[(x + 1)(x - 1) \geq 0\]
\[x \leq - 1;\ \ x \geq 1.\]
\[1 - x^{2} \geq 0\]
\[x^{2} - 1 \leq 0.\]
\[(x + 1)(x - 1) \leq 0\]
\[- 1 \leq x \leq 1.\]
\[D(f) = \left\{ - 1 \right\};\left\{ 1 \right\}.\]