\[1)\arccos\frac{1}{\sqrt{3}}\ и\ \arccos\frac{1}{\sqrt{5}};\]
\[\frac{1}{\sqrt{3}}\ :\frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{3}} > 1;\]
\[\arccos\frac{1}{\sqrt{3}} < \arccos\frac{1}{\sqrt{5}}.\]
\[2)\arccos\left( - \frac{4}{5} \right)\ и\ \arccos\left( - \frac{1}{3} \right);\]
\[- \frac{4}{5} + \frac{1}{3} = \frac{- 12 + 5}{15} = - \frac{7}{15} < 0;\]
\[\arccos\left( - \frac{4}{5} \right) > \arccos\left( - \frac{1}{3} \right).\]
\[3)\arccos\frac{\sqrt{5}}{4}\ и\ \arccos\frac{\sqrt{7}}{7};\]
\[\frac{\sqrt{5}}{4}\ :\frac{\sqrt{7}}{7} = \frac{7\sqrt{5}}{4\sqrt{7}} = \frac{\sqrt{245}}{\sqrt{112}} > 1;\]
\[\arccos\frac{\sqrt{5}}{4} < \arccos\frac{\sqrt{7}}{7}.\]
\[4)\arccos\left( - \frac{2}{\sqrt{5}} \right)\ и\ \arccos\left( - \frac{3}{7} \right);\]
\[\frac{2}{\sqrt{5}}\ :\frac{3}{7} = \frac{14}{3\sqrt{5}} = \frac{\sqrt{196}}{45} > 1;\]
\[\arccos\left( - \frac{2}{\sqrt{5}} \right) > \arccos\left( - \frac{3}{7} \right).\]