Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 956

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 956

\[1)\ \left\{ \begin{matrix} \sin x \bullet \cos y = - \frac{1}{2} \\ tg\ x \bullet ctg\ y = 1\ \ \ \ \\ \end{matrix} \right.\ \]

\[tg\ x \bullet ctg\ y = 1\]

\[\frac{\sin x}{\cos x} \bullet \frac{\cos y}{\sin y} = 1\]

\[- \frac{1}{2}\ :\left( \cos x \bullet \sin y \right) = 1\]

\[- 2\cos x \bullet \sin y = 1\]

\[- \cos x \bullet \sin y = \frac{1}{2}\]

\[\sin x \bullet \cos y - \cos x \bullet \sin y = - \frac{1}{2} + \frac{1}{2}\]

\[\sin(x - y) = 0\]

\[x - y = \pi n\]

\[x = \pi n + y.\]

\[\sin x \bullet \cos y = - \frac{1}{2}\]

\[\sin x \bullet \cos y = - \frac{1}{2}\]

\[\frac{1}{2}\left( \sin(x + y) + \sin(x - y) \right) = - \frac{1}{2}\]

\[\sin(x + y) = - 1\]

\[x + y = - \frac{\pi}{2} + 2\pi k\]

\[x = - \frac{\pi}{2} - y + 2\pi k.\]

\[Получим:\]

\[\pi n + y = - \frac{\pi}{2} - y + 2\pi k\]

\[2y = - \frac{\pi}{2} + \pi(2k - n)\]

\[y = - \frac{\pi}{4} + \pi\left( k - \frac{n}{2} \right)\]

\[x = \pi n - \frac{\pi}{4} + \pi\left( k - \frac{n}{2} \right) =\]

\[= - \frac{\pi}{4} + \pi\left( k + \frac{n}{2} \right).\]

\[Ответ:\ \ \]

\[\left( - \frac{\pi}{4} + \pi\left( k + \frac{n}{2} \right);\ - \frac{\pi}{4} + \pi\left( k - \frac{n}{2} \right) \right)\text{.\ }\]

\[2)\ \left\{ \begin{matrix} \sin x \bullet \sin y = \frac{1}{4} \\ 3\ tg\ x = ctg\ y\ \ \\ \end{matrix} \right.\ \]

\[3\ tg\ x = ctg\ y\]

\[3\frac{\sin x}{\cos x} = \frac{\cos y}{\sin y}\]

\[\frac{\sin x \bullet \sin y}{\cos x \bullet \cos y} = \frac{1}{3}\]

\[\frac{1}{4}\ :\left( \cos x \bullet \cos y \right) = \frac{1}{3}\]

\[4\cos x \bullet \cos y = 3\]

\[\cos x \bullet \cos y = \frac{3}{4}\]

\[\cos x \bullet \cos y - \sin x \bullet \sin y = \frac{3}{4} - \frac{1}{4}\]

\[\cos(x + y) = \frac{1}{2}\]

\[x + y = \pm \arccos\frac{1}{2} + 2\pi n = \pm \frac{\pi}{3} + 2\pi n\]

\[x = \pm \frac{\pi}{3} - y + 2\pi n.\]

\[\sin x \bullet \sin y = \frac{1}{4}\]

\[\sin x \bullet \sin y = \frac{1}{4}\]

\[\frac{1}{2} \bullet \left( \cos(x - y) - \cos(x + y) \right) = \frac{1}{4}\]

\[\cos(x - y) - \frac{1}{2} = \frac{1}{2}\]

\[\cos(x - y) = 1\]

\[x - y = 2\pi k\]

\[x = 2\pi k + y.\]

\[Получим:\]

\[\pm \frac{\pi}{3} - y + 2\pi n = 2\pi k + y\]

\[- 2y = \pm \frac{\pi}{3} + 2\pi k - 2\pi n\]

\[y = \pm \frac{\pi}{6} + \pi(n - k)\]

\[x_{1} = 2\pi k - \frac{\pi}{6} + \pi n - \pi k = - \frac{\pi}{6} + \pi(n + k);\]

\[x_{2} = 2\pi k + \frac{\pi}{6} + \pi n - \pi k = \frac{\pi}{6} + \pi(n + k).\]

\[Ответ:\ \ \]

\[\left( \frac{\pi}{6} + \pi(n + k);\ \frac{\pi}{6} + \pi(n - k) \right);\ \]

\[\left( - \frac{\pi}{6} + \pi(n + k);\ - \frac{\pi}{6} + \pi(n - k) \right).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам