\[z = \log_{3}(x + 2y);t = \log_{3}(x - y):\]
\[2z^{2} = zt + t^{2}\]
\[t^{2} + zt - 2z^{2} = 0\]
\[D = z^{2} + 8z^{2} = 9z^{2}\]
\[t_{1} = \frac{- z - 3z}{2} = - 2z;\]
\[t_{2} = \frac{- z + 3z}{2} = z.\]
\[1)\ \log_{3}(x - y) = - 2\log_{3}(x + 2y)\]
\[x - y = \frac{1}{(x + 2y)^{2}}\]
\[(x - y)(x + 2y)(x + 2y) = 1\]
\[\left( x^{2} + 2xy - xy - 2y^{2} \right)(x + 2y) = 1\]
\[\left( x^{2} + xy - 2y^{2} \right)(x + 2y) = 1\]
\[9(x + 2y) = 1\]
\[x + 2y = \frac{1}{9}\]
\[x = \frac{1}{9} - 2y.\]
\[\left( \frac{1}{9} - 2y \right)^{2} + y\left( \frac{1}{9} - 2y \right) - 2y^{2} = 9\]
\[\frac{1}{81} - \frac{4}{9}y + 4y^{2} + \frac{1}{9}y - 2y^{2} - 2y^{2} = 9\]
\[- \frac{1}{3}y = \frac{728}{81}\]
\[y = - \frac{728}{27};\]
\[x = \frac{1}{9} + \frac{1456}{27} = \frac{1459}{27}.\]
\[2)\ \log_{3}(x - y) = \log_{3}(x + 2y)\]
\[x - y = x + 2y\]
\[0 = 3y\]
\[y = 0\]
\[x^{2} + x \bullet 0 - 2 \bullet 0^{2} = 9\]
\[x^{2} = 9\]
\[x = \pm 3.\]
\[Область\ определения:\]
\[x > y;\ \ x > - 2y.\]
\[Ответ:\ \ (3;\ 0);\ \left( \frac{1459}{27};\ - \frac{728}{27} \right).\]
\[z = \log_{2}(x + y);t = \log_{2}(x - 2y):\]
\[z^{2} + zt = 2t^{2}\]
\[z^{2} + zt - 2t^{2} = 0\]
\[D = t^{2} + 4 \bullet 2t^{2} = t^{2} + 8t^{2} = 9t^{2}\]
\[z_{1} = \frac{- t - 3t}{2} = - 2t;\]
\[\ z_{2} = \frac{- t + 3t}{2} = t.\]
\[1)\ \log_{2}(x + y) = - 2\log_{2}(x - 2y)\]
\[x + y = \frac{1}{(x - 2y)^{2}}\]
\[(x + y)(x - 2y)(x - 2y) = 1\]
\[\left( x^{2} - 2xy + xy - 2y^{2} \right)(x - 2y) = 1\]
\[\left( x^{2} - xy - 2y^{2} \right)(x - 2y) = 1\]
\[4(x - 2y) = 1\]
\[x - 2y = \frac{1}{4}\]
\[x = \frac{1}{4} + 2y.\]
\[\left( \frac{1}{4} + 2y \right)^{2} - y\left( \frac{1}{4} + 2y \right) - 2y^{2} = 4\]
\[\frac{1}{16} + y + 4y^{2} - \frac{1}{4}y - 2y^{2} - 2y^{2} = 4\]
\[\frac{3}{4}y = \frac{63}{16}\]
\[y = \frac{21}{4};\]
\[x = \frac{1}{4} + \frac{21}{2} = \frac{43}{4}.\]
\[2)\ \log_{2}(x + y) = \log_{2}(x - 2y)\]
\[x + y = x - 2y\]
\[0 = 3y\]
\[y = 0.\]
\[x^{2} - x \bullet 0 - 2 \bullet 0^{2} = 4\]
\[x^{2} = 4\]
\[x = \pm 2.\]
\[Область\ определения:\]
\[x > - y;\ \ \ \ x > 2y.\]
\[Ответ:\ \ (2;\ 0);\ \left( \frac{43}{4};\ \frac{21}{4} \right).\]