\[1)\ \left\{ \begin{matrix} 2^{x + y} = 32\ \ \\ 3^{3y - x} = 27 \\ \end{matrix} \right.\ \]
\[2^{x + y} = 32\]
\[2^{x + y} = 2^{5}\]
\[x + y = 5\]
\[y = 5 - x.\]
\[3^{3y - x} = 27\]
\[3^{3(5 - x) - x} = 3^{3}\]
\[15 - 3x - x = 3\]
\[4x = 12\]
\[x = 3;\]
\[y = 5 - 3 = 2.\]
\[Ответ:\ \ (3;\ 2).\]
\[2)\ \left\{ \begin{matrix} 3^{x} - 2 \bullet 2^{y} = 77 \\ 3^{\frac{x}{2}} - 2^{y} = 7\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[3^{\frac{x}{2}} = 2^{y} + 7\]
\[3^{x} = 2^{2y} + 14 \bullet 2^{y} + 49.\]
\[3^{x} - 2 \bullet 2^{y} = 77\]
\[2^{2y} + 14 \bullet 2^{y} + 49 - 2 \bullet 2^{y} = 77\]
\[2^{2y} + 12 \bullet 2^{y} - 28 = 0\]
\[D = 144 + 112 = 256\]
\[2_{1}^{y} = \frac{- 12 - 16}{2} = - 14;\]
\[2_{2}^{y} = \frac{- 12 + 16}{2} = 2;\]
\[2^{y} = 2\]
\[y = 1.\]
\[3^{x} = 2^{2} + 14 \bullet 2^{1} + 49\]
\[3^{x} = 4 + 28 + 49\]
\[3^{x} = 81\]
\[3^{x} = 3^{4}\]
\[x = 4.\]
\[Ответ:\ \ (4;\ 1).\]
\[3)\ \left\{ \begin{matrix} 3^{x} \bullet 2^{y} = 576\ \ \ \ \ \ \ \\ \log_{\sqrt{2}}(y - x) = 4 \\ \end{matrix} \right.\ \]
\[\log_{\sqrt{2}}(y - x) = 4\]
\[y - x = \left( \sqrt{2} \right)^{4}\]
\[y - x = 4\]
\[y = 4 + x.\]
\[3^{x} \bullet 2^{y} = 576.\]
\[3^{x} \bullet 2^{4 + x} = 9 \bullet 64\]
\[3^{x} \bullet 2^{4 + x} = 3^{2} \bullet 2^{4 + 2}\]
\[x = 2;\]
\[y = 4 + 2 = 6.\]
\[Ответ:\ \ (2;\ 6).\]
\[4)\ \left\{ \begin{matrix} \lg x + \lg y = 4 \\ x^{\lg y} = 1000\ \ \ \\ \end{matrix} \right.\ \]
\[\lg x + \lg y = 4\]
\[\lg\text{xy} = 4\]
\[xy = 10^{4}\]
\[y = \frac{10^{4}}{x}.\]
\[x^{\lg y} = 1000\]
\[\log_{x}x^{\lg y} = \log_{x}10^{3}\]
\[\lg y = \log_{x}10^{3}\]
\[\lg\frac{10^{4}}{x} = \log_{x}10^{3}\]
\[\lg 10^{4} - \lg x = \frac{\lg 10^{3}}{\lg x}\]
\[4 - \lg x = \frac{3}{\lg x}\ \ \ \ \ | \bullet \lg x\]
\[4\lg x - \lg^{2}x = 3.\]
\[\ a = \lg x:\]
\[4a - a^{2} = 3\]
\[a^{2} - 4a + 3 = 0\]
\[D = 16 - 12 = 4\]
\[a_{1} = \frac{4 - 2}{2} = 1;\]
\[a = \frac{4 + 2}{2} = 3.\]
\[1)\ \lg x = 1\]
\[x = 10;\]
\[y = \frac{10^{4}}{10} = 10^{3}.\]
\[2)\ \lg x = 3\]
\[x = 10^{3};\]
\[y = \frac{10^{4}}{10^{3}} = 10.\]
\[Ответ:\ \ (10;\ 1000);\ (1000;\ 10).\]