\[1)\ tg^{2}\text{\ x} < 1\]
\[tg^{2}\ x - 1 < 0\]
\[(tg\ x + 1)(tg\ x - 1) < 0\]
\[- 1 < tg\ x < 1.\]
\[Ответ:\ \]
\[- \frac{\pi}{4} + \pi n < x < \frac{\pi}{4} + \pi\text{n.}\]
\[2)\ tg^{2}\text{\ x} \geq 3\]
\[tg^{2}\ x - 3 \geq 0\]
\[\left( tg\ x + \sqrt{3} \right)\left( tg\ x - \sqrt{3} \right) \geq 0\]
\[tg\ x \leq - \sqrt{3}\ \]
\[tg\ x \geq \sqrt{3}.\]
\[Ответ:\ \]
\[- \frac{\pi}{2} + \pi n < x \leq - \frac{\pi}{3} + \pi n;\ \]
\[\frac{\pi}{3} + \pi n \leq x < \frac{\pi}{2} + \pi\text{n.}\]
\[3)\ 3\sin^{2}x + \sin x\cos x > 2\]
\[3\sin^{2}x + \sin x\cos x > 2\sin^{2}x + 2\cos^{2}x\]
\[\sin^{2}x + \sin x\cos x - 2\cos^{2}x > 0\]
\[tg^{2}\ x + tg\ x - 2 > 0\]
\[D = 1 + 8 = 9\]
\[\text{tg\ }x_{1} = \frac{- 1 - 3}{2} = - 2;\]
\[\text{tg\ }x_{2} = \frac{- 1 + 3}{2} = 1.\]
\[(tg\ x + 2)(tg\ x - 1) > 0\]
\[\text{tg\ x} < - 2\]
\[\text{tg\ x} > 1.\]
\[- \frac{\pi}{2} + \pi n < x < - arctg\ 2 + \pi n;\text{\ \ \ }\]
\[\frac{\pi}{4} + \pi n < x < \frac{\pi}{2} + \pi n.\]
\[Еще\ решение:\]
\[\cos x = 0;\text{\ \ \ }\sin x = \pm 1;\]
\[x = \frac{\pi}{2} + \pi n.\]
\[Ответ:\ \]
\[- \frac{3\pi}{4} + \pi n < x < - arctg\ 2 + \pi\text{n.}\]