\[1)\ \left\{ \begin{matrix} \frac{x - y}{5} - \frac{x + y}{2} = 10 \\ \frac{x}{5} + \frac{y}{2} = 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\frac{x}{5} + \frac{y}{2} = 10\]
\[\frac{y}{2} = 10 - \frac{x}{5}\]
\[y = 20 - 0,4x.\]
\[\frac{x - y}{5} - \frac{x + y}{2} = 10\]
\[\frac{x - (20 - 0,4x)}{5} - \frac{x + (20 - 0,4x)}{2} = 10\]
\[2(1,4x - 20) - 5(0,6x + 20) = 100\]
\[2,8x - 40 - 3x - 100 = 100\]
\[0,2x = - 240\]
\[x = - 1200;\]
\[y = 20 + 480 = 500.\]
\[Ответ:\ \ ( - 1200;\ 500).\]
\[2)\ \left\{ \begin{matrix} \frac{x + y}{2} + \frac{x - y}{3} = 6 \\ \frac{x + y}{4} - \frac{x - y}{3} = 0 \\ \end{matrix} \right.\ \]
\[\frac{x + y}{2} + \frac{x - y}{3} = 6\]
\[3(x + y) + 2(x - y) = 36\]
\[3x + 3y + 2x - 2y = 36\]
\[y = 36 - 5x.\]
\[\frac{x + y}{4} - \frac{x - y}{3} = 0\]
\[\frac{x + (36 - 5x)}{4} - \frac{x - (36 - 5x)}{3} = 0\]
\[3(36 - 4x) - 4(6x - 36) = 0\]
\[108 - 12x - 24x + 144 = 0\]
\[36x = 252\]
\[x = 7;\]
\[y = 36 - 35 = 1.\]
\[Ответ:\ \ (7;\ 1).\]