\[1)\ \frac{\sqrt{3x^{3} - 22x^{2} + 40x}}{x - 4} \geq 3x - 10\]
\[x > 4:\]
\[\sqrt{3x^{3} - 22x^{2} + 40x} \geq (3x - 10)(x - 4)\]
\[\sqrt{x\left( 3x^{2} - 22x + 40 \right)} \geq 3x^{2} - 22x + 40\]
\[\sqrt{x} \geq \sqrt{3x^{2} - 22x + 40}\]
\[x \geq 3x^{2} - 22x + 40\]
\[3x^{2} - 23x + 40 \leq 0\]
\[D = 529 - 480 = 49\]
\[x_{1} = \frac{23 - 7}{2 \bullet 3} = \frac{8}{3};\]
\[x_{2} = \frac{23 + 7}{2 \bullet 3} = 5;\]
\[\left( x - \frac{8}{3} \right)(x - 5) \leq 0\]
\[\frac{8}{3} \leq x \leq 5.\]
\[x < 4:\]
\[\sqrt{3x^{3} - 22x^{2} + 40x} \leq (3x - 10)(x - 4)\]
\[x \leq \frac{8}{3};\ \ \ x \geq 5.\]
\[Еще\ корни:\]
\[3x^{2} - 22x + 40 = 0\]
\[D = 484 - 480 = 4\]
\[x_{1} = \frac{22 - 2}{2 \bullet 3} = \frac{10}{3};\ \]
\[x_{2} = \frac{22 + 2}{2 \bullet 3} = 4.\]
\[Область\ определения:\]
\[3x^{3} - 22x^{2} + 40x \geq 0\]
\[x\left( x - \frac{10}{3} \right)(x - 4) \geq 0\]
\[0 \leq x \leq \frac{10}{3}.\]
\[x - 4 \neq 0\]
\[x \neq 4\]
\[x > 4.\]
\[Ответ:\ \ \]
\[x \in \left\lbrack 0;\ \frac{8}{3} \right\rbrack \cup \left\{ \frac{10}{3} \right\} \cup (4;\ 5\rbrack.\]
\[2)\ \frac{\sqrt{2x^{3} - 22x^{2} + 60x}}{x - 6} \geq 2x - 10\]
\[x > 6:\]
\[\sqrt{2x^{3} - 22x^{2} + 60x} \geq (2x - 10)(x - 6)\]
\[\sqrt{x\left( 2x^{2} - 22x + 60 \right)} \geq 2x^{2} - 22x + 60\]
\[\sqrt{x} \geq \sqrt{2x^{2} - 22x + 60}\]
\[x \geq 2x^{2} - 22x + 60\]
\[2x^{2} - 23x + 60 \leq 0\]
\[D = 529 - 480 = 49\]
\[x_{1} = \frac{23 - 7}{2 \bullet 2} = 4;\]
\[x_{2} = \frac{23 + 7}{2 \bullet 2} = 7,5;\]
\[(x - 4)(x - 7,5) \leq 0\]
\[4 \leq x \leq 7,5.\]
\[x < 6:\]
\[\sqrt{2x^{3} - 22x^{2} + 60x} \leq (2x - 10)(x - 6)\]
\[x \leq 4;\ \ \ x \geq 7,5.\]
\[Еще\ корни:\]
\[2x^{2} - 22x + 60 = 0\]
\[x^{2} - 11x + 30 = 0\]
\[D = 121 - 120 = 1\]
\[x_{1} = \frac{11 - 1}{2} = 5;\]
\[x_{2} = \frac{11 + 1}{2} = 6.\]
\[Область\ определения:\]
\[2x^{3} - 22x^{2} + 60x \geq 0\]
\[x(x - 5)(x - 6) \geq 0\]
\[0 \leq x \leq 5.\]
\[x - 6 \neq 0\]
\[x \neq 6\]
\[x > 6.\]
\[Ответ:\ \ \]
\[x \in \lbrack 0;\ 4\rbrack \cup \left\{ 5 \right\} \cup (6;\ 7,5\rbrack.\]