\[1)\ \sqrt{9x - 20} < x\]
\[9x - 20 < x^{2}\]
\[x^{2} - 9x + 20 > 0\]
\[D = 81 - 80 = 1\]
\[x_{1} = \frac{9 - 1}{2} = 4;\]
\[x_{2} = \frac{9 + 1}{2} = 5;\]
\[(x - 4)(x - 5) > 0\]
\[x < 4;\ \ \ x > 5.\]
\[Область\ определения:\]
\[9x - 20 \geq 0\]
\[x \geq \frac{20}{9}.\]
\[Ответ:\ \ x \in \left\lbrack \frac{20}{9};\ 4 \right) \cup (5;\ + \infty).\]
\[2)\ \sqrt{x + 7} > x + 1\]
\[x + 1 < 0\]
\[x < - 1.\]
\[x + 7 > x^{2} + 2x + 1\ \ \ \]
\[x^{2} + x - 6 < 0\ \ \ \]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2} = - 3;\]
\[x_{2} = \frac{- 1 + 5}{2} = 2;\]
\[(x + 3)(x - 2) < 0\]
\[- 3 < x < 2.\]
\[Область\ определения:\]
\[x + 7 \geq 0\]
\[x \geq - 7.\]
\[Ответ:\ \ x \in \lbrack - 7;\ 2).\]
\[3)\ \sqrt{\frac{x + 4}{2 - x}} > x\]
\[\frac{x + 4}{2 - x} > x^{2};\ \ \ \ \ \ x < 0\]
\[\frac{x^{2}(2 - x) - (x + 4)}{2 - x} < 0\]
\[\frac{2x^{2} - x^{3} - x - 4}{2 - x} < 0\]
\[\frac{x^{3} - 2x^{2} + x + 4}{x - 2} < 0\]
\[\frac{(x + 1)\left( x^{2} - 3x + 4 \right)}{x - 2} < 0\]
\[D = 9 - 16 = - 7 < 0\]
\[x \in R.\]
\[\frac{x + 1}{x - 2} < 0\]
\[- 1 < x < 2.\]
\[Область\ определения:\]
\[\frac{x + 4}{2 - x} \geq 0\]
\[\frac{x + 4}{x - 2} \leq 0\]
\[- 4 \leq x < 2.\]
\[Ответ:\ \ x \in \lbrack - 4;\ 2).\]
\[4)\ \sqrt{\frac{1 + 5x}{1 + 2x}} \leq 1 - x\]
\[\frac{1 + 5x}{1 + 2x} \leq 1 - 2x + x^{2}\]
\[\frac{\left( 1 - 2x + x^{2} \right)(1 + 2x) - (1 + 5x)}{1 + 2x} \geq 0\]
\[\frac{1 + 2x - 2x - 4x^{2} + x^{2} + 2x^{3} - 1 - 5x}{1 + 2x} \geq 0\]
\[\frac{2x^{3} - 3x^{2} - 5x}{1 + 2x} \geq 0\]
\[\frac{x\left( 2x^{2} - 3x - 5 \right)}{1 + 2x} \geq 0\]
\[D = 9 + 40 = 49\]
\[x_{1} = \frac{3 - 7}{2 \bullet 2} = - 1;\]
\[x_{2} = \frac{3 + 7}{2 \bullet 2} = 2,5;\]
\[\frac{(x + 1)x(x - 2,5)}{1 + 2x} \geq 0\]
\[x \leq - 1;\]
\[- 0,5 < x \leq 0;\]
\[x \geq 2,5.\]
\[Область\ определения:\]
\[\frac{1 + 5x}{1 + 2x} \geq 0\]
\[x < - \frac{1}{2};\ \ x \geq - \frac{1}{5};\ \ \ x \leq 1.\]
\[Ответ:\ \ x \in ( - \infty;\ - 1\rbrack \cup \left\lbrack - \frac{1}{5};\ 0 \right\rbrack.\]