\[1)\ \frac{3x - 15}{x^{2} + 5x - 14} \geq 0\]
\[x^{2} + 5x - 14 = 0\ \]
\[D = 25 + 56 = 81\]
\[x_{1} = \frac{- 5 - 9}{2} = - 7;\]
\[x_{2} = \frac{- 5 + 9}{2} = 2.\]
\[\frac{3(x - 5)}{(x + 7)(x - 2)} \geq 0\]
\[- 7 < x < 2;\ \text{\ \ }x \geq 5.\]
\[Ответ:\ \ x \in ( - 7;\ 2) \cup \lbrack 5;\ + \infty)\text{.\ }\]
\[2)\ \frac{x - 1}{x^{2} + 4x + 2} < 0\]
\[x^{2} + 4x + 2 = 0\]
\[D = 16 - 8 = 8 = 4 \bullet 2\]
\[x = \frac{- 4 \pm \sqrt{8}}{2} = \frac{- 4 \pm 2\sqrt{2}}{2} =\]
\[= - 2 \pm \sqrt{2}.\]
\[x < - 2 - \sqrt{2}\]
\[- 2 + \sqrt{2} < x < 1.\]
\[Ответ:\ \ \]
\[x \in \left( - \infty;\ - 2 - \sqrt{2} \right) \cup \left( - 2 + \sqrt{2};1 \right).\]
\[3)\ \frac{x^{2} + 2x - 8}{x^{2} - 2x - 3} > 0\]
\[x^{2} + 2x - 8 = 0\]
\[D = 4 + 32 = 36\]
\[x_{1} = \frac{- 2 - 6}{2} = - 4;\]
\[x_{2} = \frac{- 2 + 6}{2} = 2.\]
\[x^{2} - 2x - 3 = 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\]
\[x_{2} = \frac{2 + 4}{2} = 3.\]
\[\frac{(x + 4)(x - 2)}{(x + 1)(x - 3)} > 0\]
\[x < - 4;\]
\[- 1 < x < 2;\]
\[x > 3.\]
\[Ответ:\ \ \]
\[x \in ( - \infty;\ - 4) \cup ( - 1;\ 2) \cup (3;\ + \infty).\]
\[4)\ \frac{(x - 5)\left( 2^{\frac{1}{x - 1}} + 0,2 \right)}{x + 2} \leq 0\]
\[\frac{x - 5}{x + 2} \leq 0\text{\ \ \ }\]
\[- 2 < x \leq 5.\]
\[x - 1 \neq 0\text{\ \ \ }\]
\[x \neq 1.\]
\[Ответ:\ \ x \in ( - 2;\ 1) \cup (1;\ 5\rbrack.\]