\[\sin^{8}x + \cos^{8}x = a\]
\[1)\ y = \sin^{2}{2x}:\]
\[\left( 1 - \frac{1}{2}y \right)^{2} - \frac{1}{8}y^{2} = a\]
\[1 - y + \frac{1}{4}y^{2} - \frac{1}{8}y^{2} = a\]
\[\frac{1}{8}y^{2} - y + 1 - a = 0\]
\[y^{2} - 8y + 8(1 - a) = 0\]
\[D = 8^{2} - 4 \bullet 8(1 - a) =\]
\[= 64 - 32 + 32a = 32(1 + a)\]
\[y = \frac{8 \pm \sqrt{32(1 + a)}}{2} =\]
\[= \frac{8 \pm 4\sqrt{2(1 + a)}}{2} =\]
\[= 4 \pm 2\sqrt{2(1 + a)}.\]
\[2)\ Подставим:\]
\[\sin^{2}{2x} = 4 \pm 2\sqrt{2(1 + a)}\]
\[\frac{1 - \cos{4x}}{2} = 4 \pm 2\sqrt{2(1 + a)}\]
\[1 - \cos{4x} = 8 \pm 4\sqrt{2(1 + a)}\]
\[\cos{4x} = \mp 4\sqrt{2(1 + a)} - 7\]
\[\cos{4x} = 4\sqrt{2(1 + a)} - 7\]
\[4x = \pm \arccos\left( 4\sqrt{2(1 + a)} - 7 \right) + 2\pi n\]
\[x = \pm \frac{1}{4}\arccos\left( 4\sqrt{2(1 + a)} - 7 \right) + \frac{\text{πn}}{2}.\]
\[3)\ Область\ определения:\]
\[- 1 \leq 4\sqrt{2(1 + a)} - 7 \leq 1\]
\[6 \leq 4\sqrt{2 + 2a} \leq 8\]
\[\frac{3}{2} \leq \sqrt{2 + 2a} \leq 2\]
\[\frac{9}{4} \leq 2 + 2a \leq 4\]
\[\frac{1}{4} \leq 2a \leq 2\]
\[\frac{1}{8} \leq a \leq 1.\]
\[Ответ:\ \]
\[\pm \frac{1}{4}\arccos\left( 4\sqrt{2(1 + a)} - 7 \right) + \frac{\text{πn}}{2};\text{\ \ \ }\]
\[\frac{1}{8} \leq a \leq 1.\]