\[1)\sin x + \cos x = \sqrt{1 + tg\ x}\]
\[\sin^{2}x + \cos^{2}x + 2\sin x \bullet \cos x =\]
\[= 1 + tg\ x\]
\[1 + 2\sin x \bullet \cos x = 1 + \frac{\sin x}{\cos x}\]
\[2\sin x \bullet \cos^{2}x = \sin x\]
\[\sin x \bullet \left( 2\cos^{2}x - 1 \right) = 0\]
\[1)\ \sin x = 0\]
\[x = \pi n.\]
\[2)\ 2\cos^{2}x - 1 = 0\]
\[\cos{2x} = 0\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Область\ определения:\]
\[\sin x + \cos x \geq 0\]
\[tg\ x + 1 \geq 0\]
\[tg\ x \geq - 1\]
\[- \frac{\pi}{4} + \pi n \leq x < \frac{\pi}{2} + \pi n.\]
\[Ответ:\ \ 2\pi n;\ \frac{3\pi}{4} + \pi n;\ \frac{\pi}{4} + 2\pi n.\]
\[2)\ \sqrt{5\sin{2x} - 2} = \sin x - \cos x\]
\[5\sin{2x} - 2 =\]
\[= \sin^{2}x + \cos^{2}x - 2\sin x \bullet \cos x\]
\[5\sin{2x} - 2 = 1 - \sin{2x}\]
\[6\sin{2x} = 3\]
\[\sin{2x} = \frac{1}{2}\]
\[2x = ( - 1)^{n} \bullet \arcsin\frac{1}{2} + \pi n\]
\[2x = ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n\]
\[x = \frac{1}{2}\left( ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n \right)\]
\[x = ( - 1)^{n} \bullet \frac{\pi}{12} + \frac{\text{πn}}{2}.\]
\[Область\ определения:\]
\[\sin x - \cos x \geq 0\]
\[5\sin{2x} - 2 \geq 0\]
\[\sin{2x} \geq \frac{2}{5}.\]
\[Ответ:\ \ \frac{5\pi}{12} + 2\pi n;\ \frac{13\pi}{12} + 2\pi n.\]