Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 874

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 874

\[1)\sin x + \sin{2x} + \sin{3x} + \sin{4x} = 0\]

\[\sin\frac{5x}{2} \bullet \cos\frac{3x}{2} + \sin\frac{5x}{2} + \cos\frac{x}{2} = 0\]

\[\sin\frac{5x}{2} \bullet \left( \cos\frac{3x}{2} + \cos\frac{x}{2} \right) = 0\]

\[\sin\frac{5x}{2} \bullet 2 \bullet \cos\frac{\frac{3x}{2} + \frac{x}{2}}{2} \bullet \cos\frac{\frac{3x}{2} - \frac{x}{2}}{2} = 0\]

\[\sin\frac{5x}{2} \bullet \cos x \bullet \cos\frac{x}{2} = 0\]

\[1)\ \sin\frac{5x}{2} = 0\]

\[\frac{5x}{2} = \pi n\]

\[x = \frac{2\pi n}{5}.\]

\[2)\ \cos x = 0\]

\[x = \frac{\pi}{2} + \pi n.\]

\[3)\ \cos\frac{x}{2} = 0\]

\[\frac{x}{2} = \frac{\pi}{2} + \pi n\]

\[x = \pi + 2\pi n\]

\[Ответ:\ \ \frac{2\pi n}{5};\ \frac{\pi}{2} + \pi n;\ \pi + 2\pi n.\]

\[2)\cos x + \cos{2x} + \cos{3x} + \cos{4x} = 0\]

\[\cos\frac{5x}{2} \bullet \cos\frac{3x}{2} + \cos\frac{5x}{2} \bullet \cos\frac{x}{2} = 0\]

\[\cos\frac{5x}{2} \bullet \left( \cos\frac{3x}{2} + \cos\frac{x}{2} \right) = 0\]

\[\cos\frac{5x}{2} \bullet 2 \bullet \cos\frac{\frac{3x}{2} + \frac{x}{2}}{2} \bullet \cos\frac{\frac{3x}{2} - \frac{x}{2}}{2} = 0\]

\[\cos\frac{5x}{2} \bullet \cos x \bullet \cos\frac{x}{2} = 0\]

\[1)\ \cos\frac{5x}{2} = 0\]

\[\frac{5x}{2} = \frac{\pi}{2} + \pi n\]

\[x = \frac{\pi}{5} + \frac{2\pi n}{5}.\]

\[2)\ \cos x = 0\]

\[x = \frac{\pi}{2} + \pi n.\]

\[3)\ \cos\frac{x}{2} = 0\]

\[\frac{x}{2} = \frac{\pi}{2} + \pi n\]

\[x = \pi + 2\pi n.\]

\[Ответ:\ \ \frac{\pi}{5} + \frac{2\pi n}{5};\ \frac{\pi}{2} + \pi n.\]

\[3)\cos x \bullet \cos{3x} = - 0,5\]

\[\cos x \bullet \left( 4\cos^{3}x - 3\cos x \right) = - \frac{1}{2}\]

\[8\cos^{4}x - 6\cos^{2}x + 1 = 0\]

\[y = \cos^{2}x:\]

\[8y^{2} - 6y + 1 = 0\]

\[D = 36 - 32 = 4\]

\[y_{1} = \frac{6 - 2}{2 \bullet 8} = \frac{1}{4};\]

\[y_{2} = \frac{6 + 2}{2 \bullet 8} = \frac{1}{2}.\]

\[1)\ \cos^{2}x = \frac{1}{4}\]

\[1 - \sin^{2}x = \frac{1}{4}\]

\[\sin^{2}x = \frac{3}{4}\]

\[\sin x = \pm \frac{\sqrt{3}}{2}\]

\[x = \pm \arcsin\frac{\sqrt{3}}{2} + \pi n = \pm \frac{\pi}{3} + \pi n.\]

\[2)\ \cos^{2}x = \frac{1}{2}\]

\[1 - \sin^{2}x = \frac{1}{2}\]

\[\sin^{2}x = \frac{1}{2}\]

\[\sin x = \pm \frac{\sqrt{2}}{2}\]

\[x = \pm \arcsin\frac{\sqrt{2}}{2} + \pi n = \pm \frac{\pi}{4} + \pi n.\]

\[Ответ:\ \pm \frac{\pi}{3} + \pi n;\ \pm \frac{\pi}{4} + \pi n.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам