\[1)\sin^{4}x - \cos^{4}x + 2\cos^{2}x = \cos{2x}\]
\[2\sin^{2}x = 0\]
\[\sin x = 0\]
\[x = \pi n.\]
\[Ответ:\ \ \pi n.\]
\[2)\ 2\sin^{2}x - \cos^{4}x = 1 - \sin^{4}x\]
\[2\sin^{2}x - 1 - \left( \cos^{4}x - \sin^{4}x \right) = 0\]
\[2\sin^{2}x - 2\cos^{2}x = 0\]
\[- 2\left( \cos^{2}x - \sin^{2}x \right) = 0\]
\[- 2\cos{2x} = 0\]
\[\cos{2x} = 0\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]