\[1)\ln\frac{2}{x + 1} = \ln(x + 2)\]
\[\frac{2}{x + 1} = x + 2\ \ \ \ \ | \bullet (x + 1)\]
\[2 = (x + 1)(x + 2)\]
\[2 = x^{2} + 2x + x + 2\]
\[x^{2} + 3x = 0\]
\[x(x + 3) = 0\]
\[x_{1} = - 3;\text{\ \ \ }x_{2} = 0.\]
\[Область\ определения:\]
\[x + 1 > 0\]
\[x > - 1.\]
\[x + 2 > 0\]
\[\ x > - 2.\]
\[Ответ:\ \ 0.\]
\[2)\log_{3}{\sqrt{3x - 6} - \log_{3}\sqrt{x - 3}} = 1\]
\[\log_{3}\sqrt{\frac{3x - 6}{x - 3}} = \log_{3}3\]
\[\sqrt{\frac{3x - 6}{x - 3}} = 3\ \ \ \ \ | \bullet \sqrt{x - 3}\]
\[\sqrt{3x - 6} = 3\sqrt{x - 3}\]
\[3x - 6 = 9(x - 3)\]
\[3x - 6 = 9x - 27\]
\[- 6x = - 21\]
\[x = 3,5.\]
\[Область\ определения:\]
\[3x - 6 > 0\]
\[x > 2.\]
\[x - 3 > 0\]
\[x > 3.\]
\(Ответ:\ \ 3,5.\)