\[\left( 6x^{2} + 7x + 2 \right)\left( 6x^{2} + 7x + 1 \right) = 210\]
\[y = 6x^{2} + 7x + 1:\]
\[(y + 1)y = 210\]
\[y^{2} + y - 210 = 0\]
\[D = 1 + 840 = 841\]
\[y_{1} = \frac{- 1 - 29}{2} = - 15;\ \]
\[y_{2} = \frac{- 1 + 29}{2} = 14.\]
\[1)\ y = - 15:\]
\[6x^{2} + 7x + 1 = - 15\]
\[6x^{2} + 7x + 16 = 0\]
\[D = 49 - 384 = - 335 < 0\]
\[x \in \varnothing.\]
\[2)\ y = 14:\]
\[6x^{2} + 7x + 1 = 14\]
\[6x^{2} + 7x - 13 = 0\]
\[D = 49 + 312 = 361\]
\[x_{1} = \frac{- 7 - 19}{2 \bullet 6} = - \frac{13}{6};\]
\[x_{2} = \frac{- 7 + 19}{2 \bullet 6} = 1.\]
\[Ответ:\ - \frac{13}{6};\ 1.\]
\[2)\ (x + 1)(x + 2)(x - 2)(x - 3) = 10\]
\[\left( x^{2} - x - 2 \right)\left( x^{2} - x - 6 \right) = 10\]
\[y = x^{2} - x - 2:\]
\[y(y - 4) = 10\]
\[y^{2} - 4y - 10 = 0\]
\[D = 16 + 40 = 56\]
\[x = \frac{4 \pm \sqrt{56}}{2} = \frac{4 \pm 2\sqrt{14}}{2} =\]
\[= 2 \pm \sqrt{14}.\]
\[Вернем\ замену:\]
\[x^{2} - x - 2 = 2 \pm \sqrt{14}\]
\[x^{2} - x - \left( 4 \pm \sqrt{14} \right) = 0\]
\[D = 1^{2} + 4\left( 4 \pm \sqrt{14} \right) =\]
\[= 17 \pm 4\sqrt{14}\]
\[x = \frac{1 \pm \sqrt{17 \pm 4\sqrt{14}}}{2}.\]
\[Ответ:\ \ \frac{1 \pm \sqrt{17 \pm 4\sqrt{14}}}{2}.\]