\[1)\ \frac{3x - 1}{x + 2} - \frac{7}{2 + x} =\]
\[= \frac{7x^{2} - 28}{x^{2} - 4} + \frac{18}{2 - x}\]
\[(3x - 8)(x - 2) =\]
\[= 7x^{2} - 28 - 18(x + 2)\]
\[3x^{2} - 6x - 8x + 16 =\]
\[= 7x^{2} - 28 - 18x - 36\]
\[3x^{2} - 14x + 16 =\]
\[= 7x^{2} - 18x - 64\]
\[4x^{2} - 4x - 80 = 0\]
\[x^{2} - x - 20 = 0\]
\[D = 1 + 80 = 81\]
\[x_{1} = \frac{1 - 9}{2} = - 4;\]
\[x_{2} = \frac{1 + 9}{2} = 5.\]
\[Ответ:\ - 4;\ 5.\]
\[2)\ \frac{x + 1}{x + 3} - \frac{12}{x^{2} - 9} = \frac{2 - x}{3 - x}\]
\[(x + 1)(x - 3) - 12 =\]
\[= (x - 2)(x + 3)\]
\[x^{2} - 3x + x - 3 - 12 =\]
\[= x^{2} + 3x - 2x - 6\]
\[x^{2} - 2x - 15 = x^{2} + x - 6\]
\[3x = - 9\]
\[x = - 3.\]
\[Ответ:\ \ корней\ нет.\]