\[1)\ \sqrt{18}\ или\ 4^{\log_{2}3 + \log_{4}\frac{5}{11}}\]
\[4^{\log_{2}3 + \log_{4}\frac{5}{11}} =\]
\[= 2^{2\log_{2}3} \bullet 4^{\log_{4}\frac{5}{11}} =\]
\[= 3^{2} \bullet \frac{5}{11} = 9 \bullet \frac{5}{11} = \frac{45}{11};\]
\[\frac{45}{11} = \sqrt{\frac{2025}{121}} = \sqrt{16\frac{89}{121}} < \sqrt{18}.\]
\[Ответ:\ \ \sqrt{18}.\]
\[2)\ \sqrt[3]{18}\ или\ \left( \frac{1}{6} \right)^{\log_{6}2 - \frac{1}{2}\log_{\sqrt{6}}5}\]
\[\left( \frac{1}{6} \right)^{\log_{6}2 - \frac{1}{2}\log_{\sqrt{6}}5} =\]
\[= 6^{- 1\log_{6}2}\ :6^{- \frac{1}{2}\log_{\sqrt{6}}5} =\]
\[b = 2^{- 1}\ :\left( \sqrt{6} \right)^{- \log_{\sqrt{6}}5} =\]
\[= 2^{- 1}\ :5^{- 1} = \frac{1}{2}\ :\frac{1}{5} = \frac{5}{2};\]
\[\frac{5}{2} = \sqrt[3]{\frac{125}{8}} = \sqrt[3]{15\frac{5}{8}} < \sqrt[3]{18}.\]
\[Ответ:\ \ \sqrt[3]{18}.\]