Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 714

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 714

\[1)\ {2,5}^{\frac{1}{7}}\text{\ \ }и\ \ {2,5}^{0,5}\]

\[y = {2,5}^{x} - возрастающая;\]

\[\frac{1}{7} - 0,5 = \frac{1}{7} - \frac{1}{2} = \frac{2 - 7}{14} =\]

\[= - \frac{5}{14} < 0.\]

\[Ответ:\ \ {2,5}^{\frac{1}{7}} < {2,5}^{0,5}.\]

\[2)\ {0,2}^{\frac{2}{3}}\text{\ \ }и\ \ {0,2}^{\frac{3}{4}}\]

\[y = {0,2}^{x} - убывающая;\]

\[\frac{2}{3} - \frac{3}{4} = \frac{8 - 9}{12} = - \frac{1}{12} < 0.\]

\[Ответ:\ \ {0,2}^{\frac{2}{3}} > {0,2}^{\frac{3}{4}}.\]

\[3)\ \log_{3,1}\sqrt{10}\text{\ \ }и\ \ \log_{3,1}3\]

\[y = \log_{3,1}x - возрастающая;\]

\[\frac{\sqrt{10}}{3} = \frac{\sqrt{10}}{\sqrt{9}} = \sqrt{\frac{10}{9}} > 1.\]

\[Ответ:\ \ \log_{3,1}\sqrt{10} > \log_{3,1}3.\]

\[4)\ \log_{0,3}\frac{4}{5}\text{\ \ }и\ \ \log_{0,3}\frac{3}{4}\text{\ \ }\]

\[y = \log_{0,3}x - убывающая;\]

\[\frac{4}{5} - \frac{3}{4} = \frac{16 - 15}{20} = \frac{1}{20} > 0.\]

\[Ответ:\ \ \log_{0,3}\frac{4}{5} < \log_{0,3}\frac{3}{4}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам