\[1)\ \log_{3}\frac{9}{\sqrt[5]{3}} + \log_{6}\sqrt[5]{36} =\]
\[= \log_{3}\frac{3^{2}}{3^{\frac{1}{5}}} + \log_{6}\left( 6^{2} \right)^{\frac{1}{5}} =\]
\[= \log_{3}3^{\frac{9}{5}} + \log_{6}6^{\frac{2}{5}} = \frac{9}{5} + \frac{2}{5} =\]
\[= \frac{11}{5} = 2,2.\]
\[2)\ 16^{0,5\log_{4}10 + 1} =\]
\[= 16^{\frac{1}{2}\log_{4}10} \bullet 16^{1} =\]
\[= \left( 4^{2} \right)^{\frac{1}{2}\log_{4}10} \bullet 16 =\]
\[= 4^{\log_{4}10} \bullet 16 = 10 \bullet 16 = 160.\]