Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 683

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 683

\[1)\ \overline{z_{1}z_{2}} = \overline{z_{1}} \bullet \overline{z_{2}}\]

\[\overline{z_{1}z_{2}} = \overline{\left( x_{1} + iy_{1} \right)\left( x_{2} + iy_{2} \right)} =\]

\[= \overline{x_{1}x_{2} + x_{1}y_{2}i + x_{2}y_{1}i - y_{1}y_{2}} =\]

\[= \overline{\left( x_{1}x_{2} - y_{1}y_{2} \right) + \left( x_{1}y_{2} + x_{2}y_{1} \right)i} =\]

\[= \left( x_{1}x_{2} - y_{1}y_{2} \right) - \left( x_{1}y_{2} + x_{2}y_{1} \right)i;\]

\[\overline{z_{1}} \bullet \overline{z_{2}} = \overline{x_{1} + iy_{1}} \bullet \overline{x_{2} + iy_{2}} =\]

\[= \left( x_{1} - iy_{1} \right)\left( x_{2} - iy_{2} \right) =\]

\[= x_{1}x_{2} - x_{1}y_{2}i - x_{2}y_{1}i - y_{1}y_{2} =\]

\[= \left( x_{1}x_{2} - y_{1}y_{2} \right) - \left( x_{1}y_{2} + x_{2}y_{1} \right)i.\]

\[Что\ и\ требовалось\ доказать.\]

\[2)\ \overline{\left( \frac{z_{1}}{z_{2}} \right)} = \frac{\overline{z_{1}}}{\overline{z_{2}}};\text{\ \ \ }z_{2} \neq 0:\]

\[\ \overline{\left( \frac{z_{1}}{z_{2}} \right)} = \overline{\frac{x_{1} + iy_{1}}{x_{2} + iy_{2}}} =\]

\[= \overline{\frac{\left( x_{1} + iy_{1} \right)\left( x_{2} - iy_{2} \right)}{\left( x_{2} + iy_{2} \right)\left( x_{2} - iy_{2} \right)}} =\]

\[= \overline{\frac{x_{1}x_{2} - x_{1}y_{2}i + x_{2}y_{1}i + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}} =\]

\[= \overline{\frac{\left( x_{1}x_{2} + y_{1}y_{2} \right) + \left( x_{2}y_{1} - x_{1}y_{2} \right)i}{x_{2}^{2} + y_{2}^{2}}} =\]

\[= \frac{\left( x_{1}x_{2} + y_{1}y_{2} \right) - \left( x_{2}y_{1} - x_{1}y_{2} \right)i}{x_{2}^{2} + y_{2}^{2}};\]

\[\frac{\overline{z_{1}}}{\overline{z_{2}}} = \frac{\overline{x_{1} + iy_{1}}}{\overline{x_{2} + iy_{2}}} = \frac{x_{1} - iy_{1}}{x_{2} - iy_{2}} =\]

\[= \frac{\left( x_{1} - iy_{1} \right)\left( x_{2} + iy_{2} \right)}{\left( x_{2} - iy_{2} \right)\left( x_{2} + iy_{2} \right)} =\]

\[= \frac{x_{1}x_{2} + x_{1}y_{2}i - x_{2}y_{1}i + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} =\]

\[= \frac{\left( x_{1}x_{2} + y_{1}y_{2} \right) - \left( x_{2}y_{1} - x_{1}y_{2} \right)i}{x_{2}^{2} + y_{2}^{2}}.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам