\[z^{10} - z^{5} - 992 = 0\]
\[D = 1 + 3968 = 3969\]
\[z_{1}^{5} = \frac{1 - 63}{2} = - 31;\]
\[z_{2}^{5} = \frac{1 + 63}{2} = 32;\]
\[1)\ z^{5} = - 31 = 31( - 1 + i \bullet 0) =\]
\[= 31\left( \cos(\pi + 2\pi n) + i\sin(\pi + 2\pi n) \right);\]
\[z = \sqrt[5]{31}\left( \cos\left( \frac{\pi}{5} + \frac{2\pi n}{5} \right) + i\sin\left( \frac{\pi}{5} + \frac{2\pi n}{5} \right) \right);\]
\[z_{1} = \sqrt[5]{31}\left( \cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5} \right);\]
\[z_{2} = \sqrt[5]{31}\left( \cos\pi + i\sin\pi \right) = - \sqrt[5]{31};\]
\[z_{3} = \sqrt[5]{31}\left( \cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5} \right).\]
\[2)\ z^{5} = 32 = 32(1 + i \bullet 0) =\]
\[= 32\left( \cos{2\pi n} + i\sin{2\pi n} \right);\]
\[z = 2\left( \cos\frac{2\pi n}{5} + i\sin\frac{2\pi n}{5} \right);\]
\[z_{1} = 2\left( \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} \right);\]
\[z_{2} = 2\left( \cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5} \right).\]
\[Ответ:\ \ \]
\[2\left( \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} \right);\ \]
\[2\left( \cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5} \right);\]
\[\sqrt[5]{31}\left( \cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5} \right);\ \]
\[- \sqrt[5]{31};\ \sqrt[5]{31}\left( \cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5} \right).\]