\[1)\ z^{4} + 81 = 0\]
\[z^{4} = - 81 = 81( - 1 + i \bullet 0) =\]
\[= 81\left( \cos(\pi + 2\pi n) + i\sin(\pi + 2\pi n) \right)\]
\[z = 3\left( \cos\frac{\pi + 2\pi n}{4} + i\sin\frac{\pi + 2\pi n}{4} \right)\]
\[z_{1} = 3\left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) =\]
\[= 3\left( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \right) = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i;\]
\[z_{2} = 3\left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right) =\]
\[= 3\left( - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \right) =\]
\[= - \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i;\]
\[z_{3} = 3\left( \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} \right) =\]
\[= 3\left( - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \right) =\]
\[= - \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i;\]
\[z_{4} = 3\left( \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} \right) =\]
\[= 3\left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \right) = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i.\]
\[2)\ 8z^{3} - 27 = 0\]
\[z^{3} = \frac{27}{8} = \frac{27}{8}(1 + i \bullet 0) =\]
\[= \frac{27}{8}\left( \cos{2\pi n} + i\sin{2\pi n} \right)\]
\[z = \frac{3}{2}\left( \cos\frac{2\pi n}{3} + i\sin\frac{2\pi n}{3} \right)\]
\[z_{1} = \frac{3}{2}\left( \cos 0 + i\sin 0 \right) =\]
\[= \frac{3}{2}(1 + i \bullet 0) = \frac{3}{2};\]
\[z_{2} = \frac{3}{2}\left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right) =\]
\[= \frac{3}{2}\left( - \frac{1}{2} + \frac{\sqrt{3}}{2} \right) = - \frac{3}{4} + \frac{3\sqrt{3}}{4}i;\]
\[z_{3} = \frac{3}{2}\left( \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} \right) =\]
\[= \frac{3}{2}\left( - \frac{1}{2} - \frac{\sqrt{3}}{2} \right) = - \frac{3}{4} - \frac{3\sqrt{3}}{4}i.\]
\[3)\ z^{4} = i\]
\[z^{4} = 0 + i \bullet 1 =\]
\[= \cos\left( \frac{\pi}{2} + 2\pi n \right) + i\sin\left( \frac{\pi}{2} + 2\pi n \right)\]
\[z = \cos\left( \frac{\pi}{8} + \frac{\text{πn}}{2} \right) + i\sin\left( \frac{\pi}{8} + \frac{\text{πn}}{2} \right)\]
\[z_{1} = \cos\frac{\pi}{8} + i\sin\frac{\pi}{8};\]
\[z_{2} = \cos\frac{5\pi}{8} + i\sin\frac{5\pi}{8};\]
\[z_{3} = \cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8};\]
\[z_{4} = \cos\frac{13\pi}{8} + i\sin\frac{13\pi}{8}.\]
\[4)\ z^{3} = - 2i\]
\[z^{3} = 2\left( 0 + i \bullet ( - 1) \right) =\]
\[= 2\left( \cos\left( \frac{3\pi}{2} + 2\pi n \right) + i\sin\left( \frac{3\pi}{2} + 2\pi n \right) \right)\]
\[z = \sqrt[3]{2}\left( \cos\left( \frac{\pi}{2} + \frac{2\pi n}{3} \right) + i\sin\left( \frac{\pi}{2} + \frac{2\pi n}{3} \right) \right)\]
\[z_{1} = \sqrt[3]{2}\left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right) =\]
\[= \sqrt[3]{2}(0 + i \bullet 1) = i\sqrt[3]{2};\]
\[z_{2} = \sqrt[3]{2}\left( \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6} \right) =\]
\[= \sqrt[3]{2}\left( - \frac{\sqrt{3}}{2} - \frac{1}{2}i \right);\]
\[z_{3} = \sqrt[3]{2}\left( \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6} \right) =\]
\[= \sqrt[3]{2}\left( \frac{\sqrt{3}}{2} - \frac{1}{2}i \right).\]
\[5)\ z^{3} = - 2 + 2i\]
\[z^{3} = \sqrt{8}\left( - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \right) =\]
\[= \sqrt{8}\left( \cos\left( \frac{3\pi}{4} + 2\pi n \right) + i\sin\left( \frac{3\pi}{4} + 2\pi n \right) \right)\]
\[z = \sqrt{2}\left( \cos\left( \frac{\pi}{4} + \frac{2\pi n}{3} \right) + i\sin\left( \frac{\pi}{4} + \frac{2\pi n}{3} \right) \right)\]
\[z_{1} = \sqrt{2}\left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) =\]
\[= \sqrt{2}\left( \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \right) = 1 + i;\]
\[z_{2} = \sqrt{2}\left( \cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12} \right);\]
\[z_{3} = \sqrt{2}\left( \cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12} \right).\]
\[6)\ z^{4} - i = 1\]
\[z^{4} = \sqrt{2}\left( \frac{\sqrt{2}}{2} + i \bullet \frac{\sqrt{2}}{2} \right) =\]
\[= \sqrt{2}\left( \cos\left( \frac{\pi}{4} + 2\pi n \right) + i\sin\left( \frac{\pi}{4} + 2\pi n \right) \right)\]
\[z = \sqrt[8]{2}\left( \cos\left( \frac{\pi}{16} + \frac{\text{πn}}{2} \right) + i\sin\left( \frac{\pi}{16} + \frac{\text{πn}}{2} \right) \right)\]
\[z_{1} = \sqrt[8]{2}\left( \cos\frac{\pi}{16} + i\sin\frac{\pi}{16} \right);\]
\[z_{2} = \sqrt[8]{2}\left( \cos\frac{9\pi}{16} + i\sin\frac{9\pi}{16} \right);\]
\[z_{3} = \sqrt[8]{2}\left( \cos\frac{17\pi}{16} + i\sin\frac{17\pi}{16} \right);\]
\[z_{4} = \sqrt[8]{2}\left( \cos\frac{25\pi}{16} + i\sin\frac{25\pi}{16} \right).\]