\[1)\ z_{1} = \frac{- 3 - 2i}{2 - i} =\]
\[= \frac{( - 3 - 2i)(2 + i)}{(2 - i)(2 + i)} =\]
\[= \frac{- 6 - 3i - 4i - 2i^{2}}{4 - i^{2}} =\]
\[= \frac{- 6 - 7i + 2}{4 + 1} = \frac{- 4 - 7i}{5} =\]
\[= - \frac{4}{5} - \frac{7}{5}i;\text{\ \ \ }\]
\[z_{2} = - \frac{4}{5} + \frac{7}{5}i:\]
\[\left( z + \frac{4}{5} + \frac{7}{5}i \right)\left( z + \frac{4}{5} - \frac{7}{5}i \right) = 0\]
\[\left( z + \frac{4}{5} \right)^{2} - \frac{49}{25}i^{2} = 0\]
\[z^{2} + \frac{8}{5}z + \frac{16}{25} + \frac{49}{25} = 0\]
\[z^{2} + \frac{8}{5}z + \frac{65}{25} = 0\]
\[5z^{2} + 8z + 13 = 0.\]
\[2)\ z_{1} = \frac{4 - i}{- 1 + i} =\]
\[= \frac{(4 - i)( - 1 - i)}{( - 1 + i)( - 1 - i)} =\]
\[= \frac{- 4 - 4i + i + i^{2}}{1 - i^{2}} =\]
\[= \frac{- 4 - 3i - 1}{1 + 1} = \frac{- 5 - 3i}{2} =\]
\[= - \frac{5}{2} - \frac{3}{2}i;\text{\ \ \ }\]
\[z_{2} = - \frac{5}{2} + \frac{3}{2}i:\]
\[\left( z + \frac{5}{2} + \frac{3}{2}i \right)\left( z + \frac{5}{2} - \frac{3}{2}i \right) = 0\]
\[\left( z + \frac{5}{2} \right)^{2} - \frac{9}{4}i^{2} = 0\]
\[z^{2} + 5z + \frac{25}{4} + \frac{9}{4} = 0\]
\[z^{2} + 5z + \frac{34}{4} = 0\]
\[2z^{2} + 10z + 17 = 0.\]