\[1)\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i;\]
\[2)\ 3\left( \cos{2\pi} + i\sin{2\pi} \right) =\]
\[= 3(1 + i \bullet 0) = 3;\]
\[3)\ \sqrt{2}\left( \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} \right) =\]
\[= \sqrt{2}\left( - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \right) = - 1 + i;\]
\[4)\ 4\left( \cos\frac{9\pi}{2} + i\sin\frac{9\pi}{2} \right) =\]
\[= 4(0 + i \bullet 1) = 4i;\]
\[5)\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6} = - \frac{\sqrt{3}}{2} - \frac{1}{2}i;\]
\[6)\cos\frac{13\pi}{3} + i\sin\frac{13\pi}{3} =\]
\[= \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i.\]