\[1)\ \left\{ \begin{matrix} |z + 1| = |z + 2|\text{\ \ \ \ \ \ \ \ \ } \\ |3z + 9| = |5z + 10i| \\ \end{matrix} \right.\ \]
\[|z + 1| = |z + 2|\ \]
\[(x + 1)^{2} + y^{2} = (x + 2)^{2} + y^{2}\]
\[x^{2} + 2x + 1 = x^{2} + 4x + 4\]
\[2x = - 3\]
\[x = - \frac{3}{2}.\]
\[|3z + 9| = |5z + 10i|\]
\[(3x + 9)^{2} + (3y)^{2} =\]
\[= (5x)^{2} + (5y + 10)^{2}\]
\[9x^{2} + 54x + 81 + 9y^{2} =\]
\[= 25x^{2} + 25y^{2} + 100y + 100\]
\[16y^{2} + 100y + 16x^{2} - 54x + 19 = 0\]
\[16y^{2} + 100y + 16 \bullet \frac{9}{4} + 54 \bullet \frac{3}{2} + 19 = 0\]
\[16y^{2} + 100y + 36 + 81 + 19 = 0\]
\[16y^{2} + 100y + 136 = 0\]
\[4y^{2} + 25y + 34 = 0\]
\[D = 625 - 544 = 81\]
\[y_{1} = \frac{- 25 - 9}{2 \bullet 4} = - \frac{17}{4};\text{\ \ }\]
\[y_{2} = \frac{- 25 + 9}{2 \bullet 4} = - 2.\]
\[Ответ:\ \ z_{1} = - \frac{3}{2} - \frac{17}{4}i;\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }z_{2} = - \frac{3}{2} - 2i.\]
\[2)\ \left\{ \begin{matrix} (1 - i)\overline{z} = (1 + i)z \\ \left| z^{2} + 51i \right| = 1\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(1 - i)\overline{z} = (1 + i)z\]
\[(1 - i)(x - yi) = (1 + i)(x + yi)\]
\[x - yi - xi + yi^{2} = x + yi + xi + yi^{2}\]
\[2yi = - 2xi\]
\[y = - x.\]
\[\left| z^{2} + 51i \right| = 1\]
\[\left| (x + yi)^{2} + 51i \right| = 1\]
\[\left| (x - xi)^{2} + 51i \right| = 1\]
\[\left| x^{2} - 2x^{2}i + x^{2}i + 51i \right| = 1\]
\[\left| x^{2} - x^{2} + \left( 51 - 2x^{2} \right)i \right| = 1\]
\[\left| \left( 51 - 2x^{2} \right)i \right| = 1\]
\[51 - 2x^{2} = - 1\text{\ \ \ }\]
\[2x^{2} = 52\text{\ \ \ }\]
\[x^{2} = 26\text{\ \ }\]
\[x_{1} = \pm \sqrt{26}.\text{\ \ \ }\]
\[51 - 2x^{2} = 1\]
\[2x^{2} = 50\]
\[x^{2} = 25\]
\[x_{2} = \pm 5.\]
\[y_{1} = \mp \sqrt{26};\text{\ \ \ }y_{2} = \mp 5;\]
\[Ответ:\ \ \]
\[z_{1} = - \sqrt{26} + \sqrt{26}i;\ \]
\[z_{2} = \sqrt{26} - \sqrt{26}i;\]
\[z_{3} = - 5 + 5i;\ \]
\[z_{4} = 5 - 5i.\]