\[|z| = 1:\]
\[\frac{1 - z}{1 + z} = \frac{1 - (a + bi)}{1 + (a + bi)} =\]
\[= \frac{(1 - a - bi)(1 + a - bi)}{(1 + a + bi)(1 + a - bi)} =\]
\[= \frac{(1 - bi)^{2} - a^{2}}{(1 + a)^{2} - \left( \text{bi} \right)^{2}} =\]
\[= \frac{1 - 2bi + b^{2}i^{2} - a^{2}}{(1 + a)^{2} - b^{2}i^{2}} =\]
\[= \frac{1 - 2bi - b^{2} - a^{2}}{(1 + a)^{2} + b^{2}} =\]
\[= \frac{\left( 1 - \left( a^{2} + b^{2} \right) \right) - 2bi}{(1 + a)^{2} + b^{2}}.\]
\[Действительная\ часть:\]
\[1 - \left( a^{2} + b^{2} \right) = 0\]
\[1 - |z| = 0\]
\[|z| = 1.\]
\[Что\ и\ требовалось\ доказать.\]