Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 592

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 592

\[z_{1} = x^{2} - 7x + 9yi = \ \ \]

\[= \left( x^{2} - 7x \right) + 9yi;\ \ \ \]

\[z_{2} = y^{2}i + 20i - 12 =\]

\[= - 12 + \left( y^{2} + 20 \right)\text{i.}\]

\[1)\ Действительная\ часть:\]

\[x^{2} - 7x = - 12\]

\[x^{2} - 7x + 12 = 0\]

\[D = 49 - 48 = 1\]

\[x_{1} = \frac{7 - 1}{2} = 3;\text{\ \ }\]

\[x_{2} = \frac{7 + 1}{2} = 4.\]

\[2)\ Мнимая\ часть:\]

\[9y = y^{2} + 20\]

\[y^{2} - 9y + 20 = 0\]

\[D = 81 - 80 = 1\]

\[y_{1} = \frac{9 - 1}{2} = 4;\text{\ \ }\]

\[y_{2} = \frac{9 + 1}{2} = 5.\]

\[Ответ:\ \ (3;\ 4);\ (3;\ 5);\ \]

\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }(4;\ 4);\ (4;\ 5).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам