\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^{14}.\]
\[1)\ a = C_{n}^{k} \bullet \left( \sqrt{x} \right)^{n - k} \bullet \left( \frac{1}{\sqrt{x}} \right)^{k} =\]
\[= C_{14}^{k} \bullet \left( \sqrt{x} \right)^{14 - k} \bullet \left( \sqrt{x} \right)^{- k} =\]
\[a = C_{14}^{k} \bullet \left( \sqrt{x} \right)^{14 - 2k} =\]
\[= C_{14}^{k} \bullet x^{\frac{1}{2}(14 - 2k)} = C_{14}^{k} \bullet x^{7 - k}.\]
\[2)\ 7 - k = 4\]
\[k = 3.\]
\[3)\ C_{14}^{3} = \frac{14!}{3!(14 - 3)!} =\]
\[= \frac{14 \bullet 13 \bullet 12 \bullet 11!}{3 \bullet 2 \bullet 11!} = 364.\]
\[Ответ:\ \ 364x^{4}.\]