\[1)\ C_{m}^{3} = \frac{4}{15}C_{m + 2}^{4}\]
\[\frac{m!}{3!(m - 3)!} = \frac{4}{15} \bullet \frac{(m + 2)!}{4!(m - 2)!}\]
\[\frac{m!}{3!(m - 3)!} =\]
\[= \frac{4}{15} \bullet \frac{(m + 2)(m + 1)m!}{4 \bullet 3!(m - 2)(m - 3)!}\]
\[\frac{4}{15} \bullet \frac{(m + 2)(m + 1)}{4(m - 2)} = 1\]
\[(m + 2)(m + 1) = 15(m - 2)\]
\[m^{2} + m + 2m + 2 = 15m - 30\]
\[m^{2} - 12m + 32 = 0\]
\[D = 144 - 128 = 16\]
\[m_{1} = \frac{12 - 4}{2} = 4;\text{\ \ }\]
\[m_{2} = \frac{12 + 4}{2} = 8.\]
\[Ответ:\ \ 4;\ 8.\]
\[2)\ 12C_{m + 3}^{m - 1} = 55A_{m + 1}^{2}\]
\[12 \bullet \frac{(m + 3)!}{(m - 1)! \bullet 4!} = 55 \bullet \frac{(m + 1)!}{(m - 1)!}\]
\[12 \bullet \frac{(m + 3)(m + 2)(m + 1)!}{4 \bullet 3 \bullet 2} =\]
\[= 55 \bullet (m + 1)!\]
\[\frac{(m + 3)(m + 2)}{2} = 55\]
\[(m + 3)(m + 2) = 110\]
\[m^{2} + 2m + 3m + 6 = 110\]
\[m^{2} + 5m - 104 = 0\]
\[D = 25 + 416 = 441\]
\[m_{1} = \frac{- 5 - 21}{2} = - 13;\]
\[m_{2} = \frac{- 5 + 21}{2} = 8.\]
\[Ответ:\ \ 8.\]
\[3)\ 5C_{m}^{3} = C_{m + 2}^{4}\]
\[5 \bullet \frac{m!}{3!(m - 3)!} = \frac{(m + 2)!}{4!(m - 2)!}\]
\[5 \bullet \frac{m!}{3!(m - 3)!} =\]
\[= \frac{(m + 2)(m + 1)m!}{4 \bullet 3!(m - 2)(m - 3)!}\]
\[5 = \frac{(m + 2)(m + 1)}{4(m - 2)}\]
\[5 \bullet 4(m - 2) = (m + 2)(m + 1)\]
\[20m - 40 = m^{2} + 2m + m + 2\]
\[m^{2} - 17m + 42 = 0\]
\[D = 289 - 168 = 121\]
\[m_{1} = \frac{17 - 11}{2} = 3;\text{\ \ }\]
\[m_{2} = \frac{17 + 11}{2} = 14.\]
\[Ответ:\ \ 3;\ 14.\]
\[4)\ C_{3m + 1}^{3m - 1} = 120\]
\[\frac{(3m + 1)!}{(3m - 1)! \bullet 2!} = 120\]
\[\frac{(3m + 1)3m(3m - 1)!}{(3m - 1)! \bullet 2} = 120\]
\[(3m + 1) \bullet 3m = 120 \bullet 2\]
\[9m^{2} + 3m - 240 = 0\]
\[3m^{2} + m - 80 = 0\]
\[D = 1 + 960 = 961\]
\[m_{1} = \frac{- 1 - 31}{2 \bullet 3} = - \frac{16}{3};\text{\ \ }\]
\[m_{2} = \frac{- 1 + 31}{2 \bullet 3} = 5;\]
\[Ответ:\ \ 5.\]