\[1)\ A_{3}^{1} = \frac{3!}{(3 - 1)!} = \frac{3!}{2!} = \frac{3 \bullet 2!}{2!} = 3;\]
\[2)\ A_{3}^{2} = \frac{3!}{(3 - 2)!} = \frac{3!}{1!} = 3 \bullet 2 = 6;\]
\[3)\ A_{7}^{2} = \frac{7!}{(7 - 2)!} = \frac{7!}{5!} =\]
\[= \frac{7 \bullet 6 \bullet 5!}{5!} = 42;\]
\[4)\ A_{7}^{7} = P_{7} = 7! =\]
\[= 7 \bullet 6 \bullet 5 \bullet 4 \bullet 3 \bullet 2 = 5040;\]
\[5)\ A_{8}^{3} = \frac{8!}{(8 - 3)!} =\]
\[= \frac{8 \bullet 7 \bullet 6 \bullet 5!}{5!} = 336;\]
\[6)\ A_{8}^{4} = \frac{8!}{(8 - 4)!} =\]
\[= \frac{8 \bullet 7 \bullet 6 \bullet 5 \bullet 4!}{4!} = 1680;\]
\[7)\ A_{10}^{2} = \frac{10!}{(10 - 2)!} =\]
\[= \frac{10 \bullet 9 \bullet 8!}{8!} = 90;\]
\[8)\ A_{10}^{4} = \frac{10!}{(10 - 4)!} =\]
\[= \frac{10 \bullet 9 \bullet 8 \bullet 7 \bullet 6!}{6!} = 5040.\]