\[y = \cos{2x} + \sin^{2}x;\ x \in \lbrack 0;\ 2\pi\rbrack.\]
\[1)\ y = \cos{2x} + \sin^{2}x =\]
\[= \cos^{2}x - \sin^{2}x + \sin^{2}x =\]
\[= \cos^{2}x = \frac{1 + \cos{2x}}{2}.\]
\[2)\ Промежутки\ возрастания:\]
\[\pi + 2\pi n \leq 2x \leq 2\pi + 2\pi n\]
\[\frac{\pi}{2} + \pi n \leq x \leq \pi + \pi\text{n.}\]
\[Ответ:\ \ \frac{\pi}{2} \leq x \leq \pi;\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\frac{3\pi}{2} \leq x \leq 2\pi.\]