\[\lbrack 0;\ 3\pi\rbrack.\]
\[1)\cos x \geq \frac{1}{2}\]
\[- \frac{\pi}{3} + 2\pi n \leq x \leq \frac{\pi}{3} + 2\pi\text{n.}\]
\[Ответ:\ \ 0 \leq x \leq \frac{\pi}{3};\ \ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ }\frac{5\pi}{3} \leq x \leq \frac{7\pi}{3}.\]
\[2)\cos x \geq - \frac{1}{2}\]
\[- \frac{2\pi}{3} + 2\pi n \leq x \leq \frac{2\pi}{3} + 2\pi\text{n.}\]
\[Ответ:\ \ 0 \leq x \leq \frac{2\pi}{3};\ \ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\frac{4\pi}{3} \leq x \leq \frac{8\pi}{3}.\]
\[3)\cos x < - \frac{\sqrt{2}}{2}\]
\[\frac{3\pi}{4} + 2\pi n < x < \frac{5\pi}{4} + 2\pi\text{n.}\]
\[Ответ:\ \ \frac{3\pi}{4} < x < \frac{5\pi}{4};\ \ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ }\frac{11\pi}{4} < x \leq 3\pi.\]
\[4)\cos x < \frac{\sqrt{3}}{2}\]
\[\frac{\pi}{6} + 2\pi n < x < \frac{11\pi}{6} + 2\pi\text{n.}\]
\[Ответ:\ \ \frac{\pi}{6} < x < \frac{11\pi}{6};\ \ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ }\frac{13\pi}{6} < x \leq 3\pi.\]