\[1)\ y = - x^{3} + 4x^{2} - 3;\]
\[y^{'} = - 3x^{2} + 4 \bullet 2x - 0 =\]
\[= 8x - 3x^{2};\]
\[y^{''} = 8 - 3 \bullet 2x = 8 - 6x.\]
\[Промежуток\ возрастания:\]
\[8x - 3x^{2} \geq 0\]
\[x(3x - 8) \leq 0\]
\[0 \leq x \leq 2\frac{2}{3}.\]
\[Выпукла\ вниз:\]
\[8 - 6x \geq 0\]
\[6x \leq 8\]
\[x \leq 1\frac{1}{3}.\]
\[2)\ y = x^{3} - 3x^{2} - x + 3;\]
\[y^{'} = 3x^{2} - 3 \bullet 2x - 1 + 0 =\]
\[= 3x^{2} - 6x - 1;\]
\[y^{''} = 3 \bullet 2x - 6 - 0 = 6x - 6.\]
\[Промежуток\ возрастания:\]
\[3x^{2} - 6x - 1 \geq 0\]
\[D = 36 + 12 = 48\]
\[x = \frac{6 \pm \sqrt{48}}{2 \bullet 3} = \frac{6 \pm 4\sqrt{3}}{6} = 1 \pm \frac{2}{\sqrt{3}};\]
\[x \leq 1 - \frac{2}{\sqrt{3}};\ \ \ x \geq 1 + \frac{2}{\sqrt{3}}.\]
\[Выпукла\ вниз:\]
\[6x - 6 \geq 0\]
\[6x \geq 6\]
\[x \geq 1.\]