\[1)\ f(x) = - 3x^{3} + 2x^{2} + 4;\]
\[f^{'}(x) = - 3 \bullet 3x^{2} + 2 \bullet 2x > 0;\]
\[9x^{2} - 4x < 0\]
\[x(9x - 4) < 0\]
\[0 < x < \frac{4}{9}.\]
\[f^{'}(x) = 0\ при\ x = 0;\ x = \frac{4}{9};\]
\[f^{'}(x) > 0\ при\ 0 < x < \frac{4}{9};\]
\[f^{'}(x) < 0\ при\ x < 0;\ x > \frac{4}{9}.\]
\[2)\ f(x) = (x + 3)^{3}(x - 4)^{2};\]
\[f^{'}(x) =\]
\[(x + 3)^{2}(x - 4) \bullet (5x - 6) > 0\]
\[x < \frac{6}{5};\ \ \ x > 4;\text{\ \ \ x} \neq - 3.\]
\[f^{'}(x) = 0\ при\ \]
\[x = - 3;\ x = \frac{6}{5};\ x = 4;\]
\[f^{'}(x) > 0\ при\ \]
\[x < - 3;\ - 3 < x < \frac{6}{5};\ x > 4;\]
\[f^{'}(x) < 0\ при\ \frac{6}{5} < x < 4.\]
\[3)\ f(x) = \frac{3x + 1}{x - 2};\]
\[f^{'}(x) = \frac{3(x - 2) - (3x + 1)}{(x - 2)^{2}} > 0;\]
\[\frac{3x - 6 - 3x - 1}{(x - 2)^{2}} > 0\]
\[- \frac{7}{(x - 2)^{2}} > 0\]
\[x \in \varnothing;\text{\ \ \ x} \neq 2.\]
\[f^{'}(x) < 0\ при\ x \neq 2.\]
\[4)\ f(x) = x^{2} + \frac{2}{x};\]
\[f^{'}(x) = 2x + 2 \bullet \left( - \frac{1}{x^{2}} \right) > 0;\]
\[x^{3} - 1 > 0\]
\[x^{3} > 1\]
\[x > 1.\]
\[f^{'}(x) = 0\ при\ x = 1;\]
\[f^{'}(x) > 0\ при\ x > 1;\]
\[f^{'}(x) < 0\ при\ x < 0;\ 0 < x < 1.\]