\[1)\ y = \sin{5x} + \cos(2x - 3);\]
\[y^{'}(x) = 5\cos{5x} - 2\sin(2x - 3).\]
\[2)\ y = e^{2x} - \ln{3x};\]
\[y^{'}(x) = 2e^{2x} - 3 \bullet \frac{1}{3x} =\]
\[= 2e^{2x} - \frac{1}{x}.\]
\[3)\ y = \sin(x - 3) - \ln(1 - 2x);\]
\[y^{'}(x) = \cos(x - 3) - \frac{- 2}{1 - 2x} =\]
\[= \cos(x - 3) + \frac{2}{1 - 2x}.\]
\[4)\ y = 6\sin\frac{2x}{3} - e^{1 - 3x};\]
\[y^{'}(x) = 6 \bullet \frac{2}{3}\cos\frac{2x}{3} + 3e^{1 - 3x} =\]
\[= 4\cos\frac{2x}{3} + 3e^{1 - 3x}.\]