\[1)\ f(x) = x^{3} + x^{2} + 1;\ x_{0} = 1:\]
\[f(1) = 1 + 1 + 1 = 3;\]
\[f^{'}(x) = 3x^{2} + 2x;\]
\[f^{'}(1) = 3 + 2 = 5;\]
\[y = 3 + 5(x - 1) = 5x - 2.\]
\[Ответ:\ \ y = 5x - 2.\]
\[2)\ f(x) = 6x - 3x^{2};\text{\ \ \ }x_{0} = 2:\]
\[f(2) = 12 - 12 = 0;\]
\[f^{'}(x) = 6 - 3 \bullet 2x;\]
\[f^{'}(2) = 6 - 12 = - 6;\]
\[y = 0 - 6(x - 2) = 12 - 6x.\]
\[Ответ:\ \ y = 12 - 6x.\]
\[3)\ f(x) = \frac{1}{x^{3}},\ \ \ x_{0} = 1:\]
\[f(1) = \frac{1}{1} = 1;\]
\[f^{'}(x) = - 3x^{- 4};\]
\[f^{'}(1) = - 3;\]
\[y = 1 - 3(x - 1) = 4 - 3x.\]
\[Ответ:\ \ y = 4 - 3x.\]
\[4)\ f(x) = \frac{1}{x^{2}},\ \ \ x_{0} = - 2:\]
\[f( - 2) = \frac{1}{4};\]
\[f^{'}(x) = - 2x^{- 3} = - \frac{2}{x^{3}};\]
\[f^{'}( - 2) = - \frac{2}{- 8} = \frac{1}{4};\]
\[y = \frac{1}{4} + \frac{1}{4}(x + 2) = \frac{1}{4}x + \frac{3}{4}.\]
\[Ответ:\ \ y = \frac{1}{4}x + \frac{3}{4}.\]
\[5)\ f(x) = \cos x,\ \ \ x_{0} = \frac{\pi}{3}:\]
\[f\left( \frac{\pi}{3} \right) = \cos\frac{\pi}{3} = \frac{1}{2};\]
\[f^{'}(x) = - \sin x;\]
\[f^{'}\left( \frac{\pi}{3} \right) = - \sin\frac{\pi}{3} = - \frac{\sqrt{3}}{2};\]
\[y = \frac{1}{2} - \frac{\sqrt{3}}{2}\left( x - \frac{\pi}{3} \right) =\]
\[= - \frac{\sqrt{3}}{2}x + \frac{1}{2} + \frac{\pi\sqrt{3}}{6}.\]
\[Ответ:\ \ y = - \frac{\sqrt{3}}{2}x + \frac{1}{2} + \frac{\pi\sqrt{3}}{6}.\]
\[6)\ f(x) = e^{x},\ \ \ x_{0} = 0:\]
\[f(0) = e^{0} = 1;\]
\[f^{'}(x) = e^{x};\]
\[f^{'}(0) = e^{0} = 1;\]
\[y = 1 + 1 \bullet (x - 0) = x + 1.\]
\[Ответ:\ \ y = x + 1.\]
\[7)\ f(x) = \ln x,\ \ \ x_{0} = 1:\]
\[f(1) = \ln 1 = 0;\]
\[f^{'}(x) = \frac{1}{x};\]
\[f^{'}(1) = \frac{1}{1} = 1;\]
\[y = 0 + 1 \bullet (x - 1) = x - 1.\]
\[Ответ:\ \ y = x - 1.\]
\[8)\ f(x) = \sqrt{x},\ \ \ x_{0} = 1:\]
\[f(1) = \sqrt{1} = 1;\]
\[f^{'}(x) = \frac{1}{2\sqrt{x}};\]
\[f^{'}(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2};\]
\[y = 1 + \frac{1}{2}(x - 1) = \frac{1}{2}x + \frac{1}{2}.\]
\[Ответ:\ \ y = \frac{1}{2}x + \frac{1}{2}.\]