\[1)\ y = e^{\frac{1}{x}};\]
\[y^{'}(x) = - \frac{1}{x^{2}} \bullet e^{\frac{1}{x}}.\]
\[2)\ y = e^{- \frac{2}{x}};\]
\[y^{'}(x) = - 2 \bullet \left( - \frac{1}{x^{2}} \right) \bullet e^{- \frac{2}{x}} =\]
\[= \frac{2}{x^{2}} \bullet e^{- \frac{2}{x}}.\]
\[3)\ y = \ln(2x - 1);\]
\[y^{'}(x) = \frac{2}{2x - 1}.\]
\[4)\ y = \ln{3x};\]
\[y^{'}(x) = 3 \bullet \frac{1}{3x} = \frac{1}{x}.\]
\[5)\ y = tg\frac{x}{2};\]
\[y^{'}(x) = \frac{1}{2\cos^{2}\frac{x}{2}}.\]
\[6)\ y = \cos{4x};\]
\[y^{'}(x) = - 4\sin{4x}.\]
\[7)\ y = tg(3x + 3);\]
\[y^{'}(x) = \frac{3}{\cos^{2}(3x + 3)}.\]
\[8)\ y = \sin\left( \frac{2x}{3} + 1 \right);\]
\[y^{'}(x) = \frac{2}{3}\cos\left( \frac{2x}{3} + 1 \right).\]