\[1)\ y = 2\cos{3x};\]
\[y^{'}(x) = 2 \bullet \left( - 3\sin{3x} \right) =\]
\[= - 6\sin{3x}.\]
\[2)\ y = - 5e^{2x};\]
\[y^{'}(x) = - 5 \bullet 2e^{2x} = - 10e^{2x}.\]
\[3)\ y = - 4\ln{2x};\]
\[y^{'}(x) = - 4 \bullet 2 \bullet \frac{1}{2x} = - \frac{4}{x}.\]
\[4)\ y = - 3\sin{2x};\]
\[y^{'}(x) = - 3 \bullet 2\cos{2x} = - 6\cos{2x}.\]
\[5)\ y = \frac{3}{10}e^{- 2x};\]
\[y^{'}(x) = \frac{3}{10} \bullet \left( - 2e^{- 2x} \right) = - 0,6e^{- 2x}.\]
\[6)\ y = 2e^{2x} - 4e^{- 2x};\]
\[y^{'}(x) = 2 \bullet 2e^{2x} - 4 \bullet \left( - 2e^{- 2x} \right) =\]
\[= 4e^{2x} + 8e^{- 2x}.\]