\[1)\ y = (x + 2)\sqrt[3]{x} = x^{\frac{4}{3}} + 3x^{\frac{1}{3}};\]
\[y^{'}(x) = \frac{4}{3}x^{\frac{1}{3}} + 2 \bullet \frac{1}{3}x^{- \frac{2}{3}} =\]
\[= \frac{4}{3}\sqrt[3]{x} + \frac{2}{3\sqrt[3]{x^{2}}}.\]
\[2)\ y = (x + 1)\sqrt{x} = x^{\frac{3}{2}} + x^{\frac{1}{2}};\]
\[y^{'}(x) = \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{- \frac{1}{2}} =\]
\[= \frac{3}{2}\sqrt{x} + \frac{1}{2\sqrt{x}}.\]
\[3)\ y = \left( \sqrt[4]{x} + \frac{1}{\sqrt[4]{x}} \right)^{2} =\]
\[= x^{\frac{1}{2}} + 2 + x^{- \frac{1}{2}};\]
\[y^{'}(x) = \frac{1}{2}x^{- \frac{1}{2}} - \frac{1}{2}x^{- \frac{3}{2}} =\]
\[= \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}}.\]
\[4)\ y = \frac{x^{3} + 2}{\sqrt[3]{x}} = x^{\frac{8}{3}} + 2x^{- \frac{1}{3}};\]
\[y^{'}(x) = \frac{8}{3}x^{\frac{5}{3}} + 2 \bullet \left( - \frac{1}{3}x^{- \frac{4}{3}} \right) =\]
\[= \frac{8}{3}x^{\frac{5}{3}} - \frac{2}{3}x^{- \frac{4}{3}}.\]
\[5)\ y = \left( \sqrt[4]{x} + \frac{1}{\sqrt[4]{x}} \right)\left( \sqrt[4]{x} - \frac{1}{\sqrt[4]{x}} \right) =\]
\[= x^{\frac{1}{2}} - x^{- \frac{1}{2}};\]
\[y^{'}(x) = \frac{1}{2}x^{- \frac{1}{2}} + \frac{1}{2}x^{- \frac{3}{2}} =\]
\[= \frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}}.\]
\[6)\ y = \left( \sqrt{x} - \sqrt[3]{x} \right)^{2} =\]
\[= x - 2x^{\frac{5}{6}} + x^{\frac{2}{3}};\]
\[y^{'}(x) = 1 - 2 \bullet \frac{5}{6}x^{- \frac{1}{6}} + \frac{2}{3}x^{- \frac{1}{3}} =\]
\[= 1 - \frac{5}{3\sqrt[6]{x}} + \frac{2}{3\sqrt[3]{x}}.\]