\[1)\ y = \cos^{2}x - \cos x\]
\[\cos^{2}x - \cos x = 0\]
\[\cos x \cdot \left( \cos x - 1 \right) = 0\]
\[\cos x = 0;\ \ \ \cos x = 1;\]
\[x = \frac{\pi}{2} + \pi n;\ \ \ x = 2\pi n.\]
\[2)\ y = \cos x - \cos{2x} - \sin{3x}\]
\[\cos x - \cos{2x} - \sin{3x} = 0\]
\[2\sin\frac{3x}{2}\sin\frac{x}{2} - 2\sin\frac{3x}{2}\cos\frac{3x}{2} = 0\]
\[2\sin\frac{3x}{2} \cdot \left( \sin\frac{x}{2} - \cos\frac{3x}{2} \right) = 0\]
\[\sin\frac{3x}{2} \cdot \left( \cos\left( \frac{\pi}{2} - \frac{x}{2} \right) - \cos\frac{3x}{2} \right) = 0\]
\[\sin\frac{3x}{2} \cdot ( - 2) \cdot \sin\left( \frac{\pi}{4} + \frac{x}{2} \right) \cdot \sin\left( \frac{\pi}{4} - x \right) = 0\]
\[\sin\frac{3x}{2} = 0\]
\[\frac{3x}{2} = \pi n\]
\[x = \frac{2\pi n}{3}\text{.\ \ }\]
\[\sin\left( \frac{\pi}{4} + \frac{x}{2} \right) = 0\]
\[\ \frac{\pi}{4} + \frac{x}{2} = \pi n\]
\[\frac{x}{2} = - \frac{\pi}{4} + \pi n\]
\[x = - \frac{\pi}{2} + 2\pi n.\]
\[\sin\left( x - \frac{\pi}{4} \right) = 0\]
\[x - \frac{\pi}{4} = \pi n;\]
\[\ x = \frac{\pi}{4} + \pi n.\]