\[\lbrack - 2\pi;\ - \pi\rbrack.\]
\[1)\ 1 + 2\cos x \geq 0\]
\[2\cos x \geq - 1\]
\[\cos x \geq - \frac{1}{2}\]
\[- \frac{2\pi}{3} + 2\pi n \leq x \leq \frac{2\pi}{3} + 2\pi\text{n.}\]
\[Ответ:\ \ \left\lbrack - 2\pi;\ - \frac{4\pi}{3} \right\rbrack.\]
\[2)\ 1 - 2\sin x < 0\]
\[2\sin x > 1\]
\[\sin x > \frac{1}{2}\]
\[\frac{\pi}{6} + 2\pi n < x < \frac{5\pi}{6} + 2\pi\text{n.}\]
\[Ответ:\ \ \left( - \frac{11\pi}{6};\ - \frac{7\pi}{6} \right).\]
\[3)\ 2 + tg\ x > 0\]
\[tg\ x > - 2\]
\[- arctg\ 2 + \pi n < x < \frac{\pi}{2} + \pi\text{n.}\]
\[Ответ:\ \ \]
\[\left\lbrack - 2\pi;\ - \frac{3\pi}{2} \right) \cup ( - arctg\ 2 - \pi;\ - \pi\rbrack.\]
\[4)\ 1 - 2\ tg\ x \leq 0\]
\[2\ tg\ x \geq 1\]
\[tg\ x \geq \frac{1}{2}\]
\[\text{atctg}\frac{1}{2} + \pi n \leq x < \frac{\pi}{2} + \pi\text{n.}\]
\[Ответ:\ \ \left\lbrack \text{arctg}\frac{1}{2} - 2\pi;\ - \frac{3\pi}{2} \right).\]