\[1)\ f(x) = \sin{2x} - x;\]
\[f^{'}(x) = 2\cos{2x} - 1 = 0;\]
\[2\cos{2x} = 1\]
\[\cos{2x} = \frac{1}{2}\]
\[2x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[2x = \pm \frac{\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{3} + 2\pi n \right) = \pm \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \pm \frac{\pi}{6} + \pi n.\]
\[2)\ f(x) = \cos{2x} + 2x;\]
\[f^{'}(x) = - 2\sin{2x} + 2 = 0;\]
\[2\sin{2x} = 2\]
\[\sin{2x} = 1\]
\[2x = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{\pi}{4} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{4} + \pi n.\]
\[3)\ f(x) = (2x - 1)^{3};\]
\[f^{'}(x) = 2 \bullet 3(2x - 1)^{2} = 0;\]
\[(2x - 1)^{2} = 0\]
\[2x - 1 = 0\]
\[2x = 1\]
\[x = \frac{1}{2}.\]
\[Ответ:\ \ \frac{1}{2}.\]
\[4)\ f(x) = (1 - 3x)^{5};\]
\[f^{'}(x) = - 3 \bullet 5(1 - 3x)^{4} = 0;\]
\[(1 - 3x)^{4} = 0\]
\[1 - 3x = 0\]
\[3x = 1\]
\[x = \frac{1}{3}.\]
\[Ответ:\ \ \frac{1}{3}.\]