Решебник по алгебре и начала математического анализа 11 класс Колягин Задание 1114

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 1114

\[f(x) = 0,5x^{2} - 2x + 2;\]

\[A\left( 1;\ \frac{1}{2} \right);\text{\ \ \ B}(4;\ 2):\]

\[f^{'}(x) = 0,5 \bullet 2x - 2 = x - 2;\]

\[\ Уравнение\ в\ точке\ A:\]

\[f^{'}(1) = 1 - 2 = - 1;\]

\[f(1) = 0,5 - 2 + 2 = 0,5;\]

\[y = 0,5 - (x - 1) = 1,5 - x.\]

\[Уравнение\ в\ точке\ B:\]

\[f^{'}(4) = 4 - 2 = 2;\]

\[f(4) = 8 - 8 + 2 = 2;\]

\[y = 2 + 2(x - 4) = 2x - 6.\]

\[4)\ Точка\ пересечения:\]

\[1,5 - x = 2x - 6\]

\[- 3x = - 7,5\]

\[x = 2,5.\]

\[5)\ Площадь\ фигуры:\]

\[= \frac{{1,5}^{3}}{6} - \frac{0^{3}}{6} + \frac{0^{3}}{6} - \frac{( - 1,5)^{3}}{6} =\]

\[= \frac{2 \bullet {1,5}^{3}}{6} = \frac{1}{3} \bullet \left( \frac{3}{2} \right)^{3} = \frac{3^{2}}{2^{3}} =\]

\[= \frac{9}{8} = 1\frac{1}{8};\]

\[Ответ:\ \ 1\frac{1}{8}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам