\[f(x) = 0,5x^{2} - 2x + 2;\]
\[A\left( 1;\ \frac{1}{2} \right);\text{\ \ \ B}(4;\ 2):\]
\[f^{'}(x) = 0,5 \bullet 2x - 2 = x - 2;\]
\[\ Уравнение\ в\ точке\ A:\]
\[f^{'}(1) = 1 - 2 = - 1;\]
\[f(1) = 0,5 - 2 + 2 = 0,5;\]
\[y = 0,5 - (x - 1) = 1,5 - x.\]
\[Уравнение\ в\ точке\ B:\]
\[f^{'}(4) = 4 - 2 = 2;\]
\[f(4) = 8 - 8 + 2 = 2;\]
\[y = 2 + 2(x - 4) = 2x - 6.\]
\[4)\ Точка\ пересечения:\]
\[1,5 - x = 2x - 6\]
\[- 3x = - 7,5\]
\[x = 2,5.\]
\[5)\ Площадь\ фигуры:\]
\[= \frac{{1,5}^{3}}{6} - \frac{0^{3}}{6} + \frac{0^{3}}{6} - \frac{( - 1,5)^{3}}{6} =\]
\[= \frac{2 \bullet {1,5}^{3}}{6} = \frac{1}{3} \bullet \left( \frac{3}{2} \right)^{3} = \frac{3^{2}}{2^{3}} =\]
\[= \frac{9}{8} = 1\frac{1}{8};\]
\[Ответ:\ \ 1\frac{1}{8}.\]