\[1)\ y = 9 - x^{2};\ \text{\ \ }\]
\[y = (x - 1)^{2} - 4:\]
\[9 - x^{2} = (x - 1)^{2} - 4\]
\[9 - x^{2} = x^{2} - 2x + 1 - 4\]
\[2x^{2} - 2x - 12 = 0\]
\[x^{2} - x - 6 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\]
\[x_{2} = \frac{1 + 5}{2} = 3.\]
\[S =\]
\[= \int_{- 2}^{3}{\left( 9 - x^{2} - (x - 1)^{2} + 4 \right)\text{dx}} =\]
\[= \int_{- 2}^{3}{\left( 12 - 2x^{2} + 2x \right)\text{dx}} =\]
\[= \left. \ \left( 12 \bullet \frac{x^{1}}{1} - 2 \bullet \frac{x^{3}}{3} + 2 \bullet \frac{x^{2}}{2} \right) \right|_{- 2}^{3} =\]
\[= \left. \ \left( 12x - \frac{2x^{3}}{3} + x^{2} \right) \right|_{- 2}^{3} =\]
\[= 36 - 2 \bullet 9 + 9 + 24 - \frac{16}{3} - 4 =\]
\[= 65 - 18 - 5\frac{1}{3} = 41\frac{2}{3}.\]
\[Ответ:\ \ 41\frac{2}{3}.\]
\[2)\ y = x^{2};\ \text{\ \ }y = \sqrt[3]{x}:\]
\[x^{2} = \sqrt[3]{x}\]
\[x^{6} = x\]
\[x\left( x^{5} - 1 \right) = 0\]
\[x_{1} = 0;\text{\ \ \ }x_{2} = 1.\]
\[S = \int_{0}^{1}{\left( x^{2} - \sqrt[3]{x} \right)\text{dx}} =\]
\[= \int_{0}^{1}{\left( x^{2} - x^{\frac{1}{3}} \right)\text{dx}} =\]
\[= \left. \ \left( \frac{x^{3}}{3} - x^{\frac{4}{3}}\ :\frac{4}{3} \right) \right|_{0}^{1} =\]
\[= \left. \ \left( \frac{x^{3}}{3} - \frac{3\sqrt[3]{x^{4}}}{4} \right) \right|_{0}^{1} =\]
\[= \left( \frac{1^{3}}{3} - \frac{3\sqrt[3]{1^{4}}}{4} \right) - \left( \frac{0^{3}}{3} - \frac{3\sqrt[3]{0^{4}}}{4} \right) =\]
\[= \frac{1}{3} - \frac{3}{4} = \frac{4 - 3 \bullet 3}{12} =\]
\[= \frac{4 - 9}{12} = - \frac{5}{12}.\]
\[Ответ:\ \ \frac{5}{12}.\]