\[y = x^{2} - 2x - 3.\]
\[1)\ x_{0} = - \frac{b}{2a} = - \frac{- 2}{2 \bullet 1} = \frac{2}{2} = 1;\]
\[y_{0} = 1 - 2 - 3 = - 4.\]
\[x^{2} - 2x - 3 < 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\]
\[x_{2} = \frac{2 + 4}{2} = 3;\]
\[(x + 1)(x - 3) < 0\]
\[- 1 < x < 3.\]
\[2)\ Возрастает\ на\ отрезке\ \lbrack 1;\ 4\rbrack:\]
\[y^{'}(x) = \left( x^{2} \right)^{'} - (2x + 3)^{'} =\]
\[= 2x - 2 \geq 0;\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[3)\ Наименьшее\ значение:\]
\[y^{'}(x) = \left( x^{2} \right)^{'} - (2x + 3)^{'} =\]
\[= 2x - 2 \geq 0;\]
\[x - 1 \geq 0\]
\[x \geq 1\]
\[x = 1.\]
\[4)\ x^{2} - 2x - 3 > - 2x + 1\]
\[x^{2} - 4 > 0\]
\[(x + 2)(x - 2) > 0\]
\[x < - 2;\ \ \ x > 2.\]
\[5)\ x = 2:\]
\[f^{'}(x) = \left( x^{2} \right)^{'} - (2x + 3)^{'} =\]
\[= 2x - 2;\]
\[f^{'}(2) = 4 - 2 = 2;\]
\[f(2) = 4 - 4 - 3 = - 3.\]
\[Уравнение\ касательной:\]
\[y = - 3 + 2(x - 2) =\]
\[= - 3 + 2x - 4 = 2x - 7.\]