\[\boxed{\mathbf{998}\mathbf{.}}\]
\[1)\ f(x) = \frac{x}{x - 3} = \frac{x - 3 + 3}{x - 3} =\]
\[= 1 + \frac{3}{x - 3};\]
\[F(x) = 1 \bullet \frac{x^{1}}{1} + 3 \bullet \frac{1}{1} \bullet \ln(x - 3) =\]
\[= x + 3\ln(x - 3) + C.\]
\[2)\ f(x) = \frac{x - 1}{x^{2} + x - 2} =\]
\[= \frac{x - 1}{x^{2} - x + 2x - 2} =\]
\[= \frac{x - 1}{x(x - 1) + 2(x - 1)} = \frac{1}{x + 2};\]
\[F(x) = \frac{1}{1} \bullet \ln(x + 2) =\]
\[= \ln(x + 2) + C.\]
\[3)\ f(x) = \cos^{2}x = \frac{1 + \cos{2x}}{2};\]
\[F(x) = \frac{1}{2} \bullet \frac{x^{1}}{1} + \frac{1}{2} \bullet \frac{1}{2}\sin{2x} =\]
\[= \frac{x}{2} + \frac{1}{4}\sin{2x} = \frac{2x + \sin{2x}}{4} + C.\]
\[4)\ f(x) = \sin{3x} \bullet \cos{5x};\]
\[= \frac{4\cos{2x} - \cos{8x}}{16} + C.\]