\[\boxed{\mathbf{993}\mathbf{.}}\]
\[1)\ f(x) = e^{2x} - \cos{3x};\]
\[F(x) = \frac{1}{2}e^{2x} - \frac{1}{3}\sin{3x} + C.\]
\[2)\ f(x) = e^{\frac{x}{4}} + \sin{2x};\]
\[F(x) = 1\ :\frac{1}{4} \bullet e^{\frac{x}{4}} - \frac{1}{2}\cos{2x} =\]
\[= 4e^{\frac{x}{4}} - \frac{1}{2}\cos{2x} + C.\]
\[3)\ f(x) = 2\sin\frac{x}{5} - 5e^{2x + \frac{1}{3}};\]
\[4)\ f(x) = 3\cos\frac{x}{7} + 2e^{3x - \frac{1}{2}};\]
\[F(x) =\]
\[= 3 \bullet 1\ :\frac{1}{7} \bullet \sin\frac{x}{7} + 2 \bullet \frac{1}{3} \bullet e^{3x - \frac{1}{2}} =\]
\[= 21\sin\frac{x}{7} + \frac{2}{3}e^{3x - \frac{1}{2}} + C.\]
\[5)\ f(x) = \sqrt{\frac{x}{5}} + 4\sin(4x + 2) =\]
\[= \frac{1}{\sqrt{5}} \bullet (x)^{\frac{1}{2}} + 4\sin(4x + 2);\]
\[= \frac{2x\sqrt{x}}{3\sqrt{5}} - \cos(4x + 2) + C.\]
\[6)\ f(x) = \frac{4}{\sqrt{3x + 1}} - \frac{3}{2x - 5} =\]
\[= 4 \bullet (3x + 1)^{- \frac{1}{2}} - \frac{3}{2x - 5};\ \]