\[\boxed{\mathbf{977}\mathbf{.}}\]
\[\text{a\ }и\ b - длины\ катетов\ \]
\[основания\ пирамиды:\]
\[b = \sqrt{c^{2} - a^{2}} = \sqrt{4^{2} - a^{2}} =\]
\[= \sqrt{16 - a^{2}};\]
\[V(a) = \frac{1}{3} \bullet S_{осн} \bullet h =\]
\[= \frac{1}{3} \bullet \frac{1}{2}ab \bullet 12 = 2a \bullet \sqrt{16 - a^{2}}.\]
\[= 2 \bullet \sqrt{16 - a^{2}} - \frac{2a^{2}}{\sqrt{16 - a^{2}}} =\]
\[= 2 \bullet \frac{16 - a^{2} - a^{2}}{\sqrt{16 - a^{2}}} =\]
\[= 2 \bullet \frac{16 - 2a^{2}}{\sqrt{16 - a^{2}}}.\]
\[Промежуток\ возрастания:\]
\[16 - 2a^{2} > 0\]
\[2a^{2} < 16\]
\[a^{2} < 8\]
\[- \sqrt{8} < a < \sqrt{8}.\]
\[a = \sqrt{8} - точка\ максимума;\]
\[V\left( \sqrt{8} \right) = 2 \bullet \sqrt{8} \bullet \sqrt{16 - 8} =\]
\[= 2 \bullet \sqrt{8} \bullet \sqrt{8} = 2 \bullet 8 = 16.\]
\[Ответ:\ \ 16.\]